• Title/Summary/Keyword: Floc Size

Search Result 96, Processing Time 0.02 seconds

Optimum Coagulation of Water Treatment Plant using On-line Floc Monitoring System (정수장 응집제주입 최적화를 위한 플럭 모니터링)

  • Hwang, Hwando;Lim, Sangho;Sung, Kyujong;Han, Youngjin;Kim, Youngbeom;Kwak, Jongwoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.397-406
    • /
    • 2009
  • This study was conducted to monitor the floc sizes forming in the mixing zone in the water treatment plant. The dosing amount of poly aluminium chloride(PAC) was determined by particle dispersion analyzer(iPDA) in the lab and field scale test. During a field test period, PAC coagulant was used and the raw water was taken from Nakdong river. PAC wad diluted to activate the coagulant, leading to bring the more homogeneous dispersion in the shorter time. To monitor the floc sizes, the unit of floc size index(FSI) was used. With increasing of raw water turbidity, FSI value was increased. Also, the increased dosing amount of PAC brought the increased FSI and with overdosing of coagulant was in turn decreased. When the PAC was fed into the raw water after dilution in a field scale test, the width of FSI was narrower compared with the feeding of the mother liquor of PAC, implying that the formed flocs are denser and more uniform sizes. The width of FSI in average was varied on depending on the basicity of coagulant. Also, dF value, fractal dimension was evalued with the different coagulants, showing from 2.01 to 2.03. On-line floc monitor was effective for the optimal dosing in the drinking water plant.

Evaluations of Coagulation Process for Membrane Pre-treatment using Floc Growth Rate Analyzer (응집 플록 성장률 측정기를 이용한 멤브레인 공정의 전처리 응집공정 평가)

  • Son, Hee-Jong;Kim, Sang-Goo;Kim, Do-Hwan;Kang, So-Won;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.25 no.2
    • /
    • pp.231-238
    • /
    • 2016
  • In this study, we have investigated to find optimal pre-treatment flocculation condition by analyzing the floc growth rate with mixing conditions and the membrane permeation flux for pre-treatment step of the membrane process. The higher mixing intensity showed a constant floc size index (FSI) values, and lower mixing intensity increased the degree of dispersion of the FSI values. Results of comparing the distribution characteristics of the FSI value and the permeation flux were more effective in increasing flux when the FSI values were 0.2 or higher. The degree of dispersion of FSI was relatively large in 40 rpm mixing condition compared to 120 rpm. In 40 rpm mixing condition, it decreased the permeation flux compared to 120 rpm because various sizes of flocs were distributed. Coagulation-UF membrane process enhanced 30%~40% of the flux rate compare to UF alone process, and the coagulation-MF process increased up to 5% of the flux rate compare to MF alone process. Pre-treatment, that is, coagulation process, has been found to be less effects on relatively larger pore size for MF membrane. For UF membrane, the flux was a little bit same when applying only the rapid mixing process or rapid mixing with slow mixing processes together. In case of MF membrane, the flux was improved when rapid mixing process applied with slow mixing process together.

Physical Characteristics of Floc Density of Suspended Fine Particles in accordance with the Cohesiveness (점착성에 따른 부유 미립자의 플럭밀도에 대한 물리적 특성)

  • Choi, In Ho;Kim, Jong Woo
    • Journal of Wetlands Research
    • /
    • v.20 no.3
    • /
    • pp.227-234
    • /
    • 2018
  • This paper was examined the physical characteristics of floc density of suspended fine particles with varying cohesiveness. The analysis of floc density was performed in a small annular flume with a free water surface under different bed shear stresses and ion addition. Fine-grained silica was used as model material, as it is the main mineral components of clay that affects sedimentation. It was concluded that floc density depended on increasing the bed shear stress, the salinity and pH value. Floc density decreased with increasing the salinity in still water and floc size, whereas the opposite was true when increasing the bed shear stress. Also, it increased at pH6.8 more than at pH4.2 when increasing the bed shear stress in the range from 0.0086 to $0.0132N/m^2$.

Evaluation of the Two Class Population Balance Equation for Predicting the Bimodal Flocculation of Cohesive Sediments in Turbulent Flow (난류조건에서의 점착성 유사 이군집 응집 모형 적용성 평가)

  • Lee, Byung Joon;Toorman, E.A.
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.3
    • /
    • pp.233-243
    • /
    • 2015
  • The bimodal flocculation of cohesive sediments in water environments describes the aggregation and breakage process developing a bimodal floc size distribution with dense flocculi and floppy flocs. A two class population balance equation (TCPBE) was tested for simulating the bimodal flocculation by a model-data fitting analysis with two sets of experimental data (low and high turbulent flows) from 1-D flocculation-settling column tests. In contrast to the Single-Class PBE (SCPBE), the TCPBE could simulate interactions between flocculi and flocs and the flocculation mechanism by differential settling in a low turbulent flow. Also, the TCPBE could perform the same quality of simulation as the elaborate Multi-Class PBE (MCPBE), with a small number of floc size classes and differential equations. Thus, the TCPBE was proven to be the simplest model that is capable of simulating the bimodal flocculation of cohesive sediments in water environments and water, wastewater treatment systems.

Effect of cake resistance by first-aggregation of in-line injection system (인라인 주입방식의 최초응집이 케이크 저항에 미치는 영향)

  • KIM, Taeyoung;PARK, Heekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.281-288
    • /
    • 2008
  • Cake resistance is influenced by floc size deposited on membrane surface. Enlarging floc size can reduce cake resistance. The small particles are enlarged by coagulation and flocculation process in conventional mixing tank at membrane filtration system. Fully-grown flocs for reducing the cake resistance, however, are ruptured while passing through a pump. In light of this fact, this study aims to experimentally look at the reaggregation phenomenon of mixing system. In addition, reaggregation phenomenon of mixing system is compared with first-aggregation of in-line injection system in which coagulant is injected just before a pump. These results suggest that first-aggregation of in-line injection system is better than reaggregation of mixing system for G-value above $3100sec^{-1}$. Since G-value in pipe of actual membrane filtration system are usually larger than $3100sec^{-1}$. The performance of in-line injection system is expected to be better than the conventional mixing tank system.

Characteristics of Membrane Fouling in the Membrane-Coupled Activated Sludge (MCAS) System (막격합형 활성슬러지 시스템에서 막오염 특성의 분석)

  • 김재석;이정학
    • Membrane Journal
    • /
    • v.8 no.3
    • /
    • pp.130-137
    • /
    • 1998
  • Membrane fouling characteristics in the membrane-coupled activated sludge system were investigated. The influence of the floc size variation on the filtration resistance was analyzed using resistance-in-series model and mixed liquor was fractionated into three components to verify which component would give rise to a major contribution to the total resistance. The microbial floc size was rapidly reduced during the initial 4~6 hours of operation, and then decreased slightly but steadily, followed by leveling off at the size of 20 $\mu$m. The specific resistance of activated sludge increased with operation time, and measured values of specific resistance were matched well with the values estimated on the basis of the mean particle size in the mixed liquor. The contribution of soluble organics and cells to the total resistance was relativdy small compared with that of the supematant. Colloidal particles in the supematant showed much higher specific resistance than that of microbial floc, and played the most important role in the cake resistance.

  • PDF

The Effect of Coagulant on Filtration Performance in Submerged MBR System (침지형 MBR 공정에서 응집제가 여과성능에 미치는 영향)

  • Kim Kwan-Yeop;Kim Ji-Hoon;Kim Young-Hoon;Kim Hyung-Soo
    • Membrane Journal
    • /
    • v.16 no.3
    • /
    • pp.182-187
    • /
    • 2006
  • The purpose of this study was to investigate effect of coagulation on filtration performance of membrane in submerged MBR system and influence of continuous aeration to reduce fouling of membrane surface on coagulated floc. For this purpose, aeration tank sludge of MBR system was compared with jar-test sludge. The experimental results were analysed in terms of floc size and SRF (Specific resistance of Filtration). The more alum was added, the more content of floc below $10{\mu}m$ reduced and SRF decreased. But compared with jar-test results, it was found that effect of coagulation on MBR floc was reduced. Operation time of membrane in alum added MBR was longer than that in control MBR. But operation time was not proportional to alum dose. It was thought that the result was reason that floc below $10{\mu}m$ was not reduced sufficiently by shear force of continuous aeration. Moreover it was founded that if alum is added more than proper dose, it brings filtration resistance to increase.

Study on applicability of fractal theory to cohesive sediment in small rivers (프랙탈 이론의 소하천 점착성 유사 적용에 관한 연구)

  • Lim, Byung Gu;Son, Minwoo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.10
    • /
    • pp.887-901
    • /
    • 2016
  • Cohesive sediments form flocs through the flocculation process. The size and density of floc are variable whereas those of a fine sediment are always assumed to be constant. The settling velocity, one of main factors of sediment transport, is determined by size and density of particle. Therefore, the flocculation process plays an important role in transport of cohesive sediment. It is of great difficulty to directly measure the density of floc in the field due to technical limitation at present. It is a popular approach to estimate the density of floc by applying the fractal theory. The main assumption of fractal theory is the self-similarity. This study aims to examine the applicability of fractal theory to cohesive sediment in small rivers of Korea. Sampling sediment has been conducted in two different basins of Geum river and Yeongsan river. The results of settling experiments using commercial camera show that the sediment in Geum river basin follows the main concept of fractal theory whereas the sediment in Yeongsan river basin does not have a clear relationship between floc size and fractal dimension. It is known from this finding that the fractal theory is not easily applicable under the condition that the cohesive sediment includes the high content of organic matter.

Comparison of Electrocoagulation and Chemical Coagulation in Removal on Water Treatment (정수처리에서 전기응집과 화학응집의 처리효율 비교)

  • Han, Moo-Young;Song, Jae-Min;Park, Sang-Cheol
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.689-695
    • /
    • 2004
  • Electrocoagulation has been suggested as a promising alternative to conventional coagulation. The process is characterized by reduced sludge production, no requirement for chemical use, and ease of operation. However, this coagulation has scarcely been studied in water purifying process. This study was performed several batch experiments to compare turbidity removal between electrocoagulation and chemical coagulation. In addition, characteristics of floe were evaluated with zeta potential and particle size distributions. Electrocoagulation showed a relatively higher removal of turbidity (approximately 5%) with the same aluminum amount than conventional chemical coagulation. In addition, turbidity removal by electrocoagulation was less sensitive to pH and was greater for more extensive pH range than chemical coagulation. The results of zeta potential and floc size distributions illustrated that electrocoagulation provided the preferable conditions for coagulation such as zeta potential close to zero millivolt and increased portions of particles in the range of 40 and $100{\mu}m$.

Numerical Simulation of Turbulence-Induced Flocculation and Sedimentation in a Flocculant-Aided Sediment Retention Pond

  • Lee, Byung Joon;Molz, Fred
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.165-174
    • /
    • 2014
  • A model combining multi-dimensional discretized population balance equations with a computational fluid dynamics simulation (CFD-DPBE model) was developed and applied to simulate turbulent flocculation and sedimentation processes in sediment retention basins. Computation fluid dynamics and the discretized population balance equations were solved to generate steady state flow field data and simulate flocculation and sedimentation processes in a sequential manner. Up-to-date numerical algorithms, such as operator splitting and LeVeque flux-corrected upwind schemes, were applied to cope with the computational demands caused by complexity and nonlinearity of the population balance equations and the instability caused by advection-dominated transport. In a modeling and simulation study with a two-dimensional simplified pond system, applicability of the CFD-DPBE model was demonstrated by tracking mass balances and floc size evolutions and by examining particle/floc size and solid concentration distributions. Thus, the CFD-DPBE model may be used as a valuable simulation tool for natural and engineered flocculation and sedimentation systems as well as for flocculant-aided sediment retention ponds.