• Title/Summary/Keyword: Floating to Surface

Search Result 357, Processing Time 0.027 seconds

SIMULATION OF RELATIVE MOTION OF FLOATING BODIES INCLUDING EFFECTS OF A FENDER AND A HAWSER (방현재와 계류삭 효과를 고려한 부유체의 상대운동 모사)

  • Shin, Sangmook
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • A developed code is applied to simulate relative motion of floating bodies in a side-by-side arrangement, including effects of a fender and a hawser. The developed code is based on the flux-difference splitting scheme for immiscible incompressible fluids and the hybrid Cartesian/immersed boundary method. To validate the developed code for free surface flows around deforming boundaries, the water wave generation is simulated, which is caused by bed movement. The computed wave profile and time histories of wave elevation are compared with other experimental and computational results. The effects of a fender and a hawser are modeled by asymmetric force acting on the floating bodies according to a relative displacement with the bounds, in which the fender and the hawser exert no force on the bodies. It has been observed that the floating body can be accelerated by a gap flow due to a phase difference caused by the free surface. Grid independency is established for the computed time history of the body velocity, based on three different size grids.

The Efficiency Analysis of Tracking-Type Floating PV System (추적식 수상 태양광 발전 시스템 성능 분석)

  • Yang, Yoen Won;Jeong, Seon Ok;Shin, Hyun Woo;Lee, Kil Song
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.122-125
    • /
    • 2013
  • The Floating Photovoltaic System was installed on the surface of water. There were some researches in this subject. But there was not many studies with experiment on a high waterproof Floating Photovoltaic modules. The aim of this study was to analyze the performance of the Floating Photovoltaic System. For this experiment, a high waterproof Floating Photovoltaic modules were designed and applied to the module capacity of 10 kW Tracking-Type structure. The experiment results indicated the performance of the daily production is 51.6 kW; the production capacity of Floating Photovoltaic System is expected to be 23% higher than that of the ground-mounted photovoltaic system.

Application of Rigid Lid Boundary Condition for Three Dimensional Flow Analysis beneath Floating Structure (부유체하부의 3차원 흐름해석을 위한 Rigid lid 경계조건의 적용)

  • Hong, Nam-Seeg
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.55-62
    • /
    • 2012
  • In this paper, the rigid lid boundary condition is applied to simulate the influence of floating structures such as ships or pontoons, and the pressure term in both the momentum equations and continuity equation are modified. The pressure of a floating structure under the free surface is dependent on the draft of the structure, generally called a ship. If the free surface is covered by a floating structure, the free surface cannot move freely. The water level should be fixed, using a rigid lid boundary condition. This boundary condition is implemented by reducing the storage area of the grid cell with a factor between zero and one. The numerical model developed by Hong (2009) is verified through a comparison with experimental results, and the influence of the reduction factor is investigated using the verified numerical model.

The Relationship between the Dragonfly Diversity and the Environmental Factors in the Juam Wetland (주남습지에 서식하는 잠자리와 주변환경과의 관계)

  • Kim, Ji-Suk;Lee, Soo-Dong;Kim, Dong-Pil
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.1
    • /
    • pp.66-76
    • /
    • 2018
  • This study surveyed the species and population of dragonflies in 20 study sites in the Junam wetland in May and July 2015 to investigate the relationship between the dragonflies and the inhabited environment. We measured the environmental factors such as the area of emergent plants, the area of floating and floating-leaved plants, the area of water surface, the area of water plants, and the nearby land-use type and analyzed the relationship to the dragonfly species, population, and diversity index. We found 757 dragonflies belonging to 21 species of 6 families. The area of floating and floating-leaved plants and the area of water surface affected the species diversity. The area of floating and floating-leaved plants and the area of surface water, in particular, showed the positive correlation with the species richness and the dominance value, respectively. The area of water surface showed the negative correlations with Shannon's diversity index and evenness. Among the type of surrounding land-uses, the dry fields and orchards showed significantly lower average species richness than wetlands. Among the species, Cercion calamorum and Crocothemis servilia were positively correlated with floating and floating-leaved plants. Cercion v-nigrum and Epophthalmia elegans were positively correlated with the area of water surface, and Ischnura asiatica and Ceriagrion nipponicum were negatively correlated. The recent uncontrolled proliferation of lotus colony in the Junam wetland is likely to affect greatly the species composition of dragonflies which have a close relationship with plant species.

″Drifting Cups on a Meandering Stream″ in Japan

  • Nakayama, Yasuki;Aoki, K.;Oki, M.;Kobayashi, T.;Saga, T.;Maruoka, H.;Kato, S.
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1768-1774
    • /
    • 2001
  • Drifting Cups on a Meandering Stream (Kyokusui-no-En) is a Poetry Party that had its origin In ancient China, and was introduced to Japan passing through Korea. The flow of the meandering stream was made clear using the flow visualization techniques, surface floating method, PTV and the numerical simulation. At the same time, the motions of floating cup, the floating speed, relating speed and the trajectory of the cup were also analysed by using an originally developed image processing technique. Based on these researches, the model channel was considered. To make this party interesting the channel must has the characteristic that the drifting cups take the random pass and stagnant at the unexpected place. This model channel is satisfied with these conditions and the fluid mechanics consideration is performed on the both points of the experimental visualization and numerical simulation.

  • PDF

Three-dimensional Molecular Director Simulation within a Unit Pixel of TFT-LCDs including Floating Electrodes

  • Jung, Sung-Min;Park, Woo-Sang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1151-1154
    • /
    • 2004
  • In this study, we presented a novel method to calculate unknown voltages on the floating electrodes introduced in a unit pixel of TFT-LCDs using three-dimensional molecular director simulation. For the simulation of the potential distribution profiles generated under the influence of the floating electrodes, we used the floating boundary condition on the surface enclosing the floating electrodes. The constraint for the floating boundary condition was derived from the charge neutrality condition about the floating electrodes disconnected from voltage sources. For the pixel with the floating electrodes patterned between the pixel and the data electrodes, we simulated the molecular director and the potential distribution in three-dimension, and then observed the location of the disclination lines around the edge of the pixel electrode. As a result, it was revealed that the floating electrodes significantly affect the electro-optical characteristics such as the location of the disclination line.

  • PDF

A Study on the Approximation Method of the Hydrodynamic Forces on the VLFS (초대형 부유식 해양구조물에 작용하는 유체력 추정에 관한 근사계산법의 연구)

  • 박노식
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.74-83
    • /
    • 1997
  • This study is to develop a practical calculation method of hydrodynamic force and motion response on very large floating structures of multiple legs. To investigate the effecr of hydrodynamic interfaction and of free surface on the reaponses of very large floating structures in regular waves, four kind of models are considered, ie. 1, 4, 64, 21248 column with footing. Based upon the results of this study, it is found that the middle parts of very large floating structures have small diffration effects. Therefore only out side parts are used to determine the hydrodynamic forcea for taking into account the effects of interaction.

  • PDF

A Study on Wave Responses of Vertical Tension-Leg Circular Floating Bodies (연직인장계류된 원형부유체의 파랑응답에 관한 연구)

  • Lee, Kwang-Ho;Kim, Chang-Hoon;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.3
    • /
    • pp.248-257
    • /
    • 2011
  • In the present study, we proposed a new numerical wave tank model to analyze the vertical tension-leg circular floating bodies, using a 2-D Navier-Stokes solver. An IBM(Immersed Boundary Method) capable of handling interactions between waves and moving structures with complex geometry on a standard regular Cartesian grid system is coupled to the VOF(Volume of Fluid) method for tracking the free surface. Present numerical results for the motions of the floating body were compared with existing experimental data as well as numerical results based on FAVOR(Fractional Area Volume Obstacle Representation) algorithm. For detailed examinations of the present model, the additional hydraulic experiments for floating motions and free surface transformations were conducted. Further, the versatility of the proposed numerical model was verified via the numerical and physical experiments for the general rectangular floating bodies. Numerical results were compared with experiments and good agreement was archived.

Key Technologies for Floating Type Artificial Upwelling System to Strengthen Primary Production (해역 기초생산력 증대를 위한 부유식 인공용승시스템 요소기술)

  • Jung, Dong-Ho;Lee, Ho-Saeng;Kim, Hyeon-Ju;Moon, Deok-Soo;Lee, Seung-Won
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.78-83
    • /
    • 2012
  • The abundant nutrients contained in deep seawater are delivered by natural upwellings from the deep sea to the surface sea. However, the natural upwelling phenomenon is limited to specific areas of the sea; in other areas, the thermocline separates the surface sea from the lower layer. Thus, the surface layer is often deficient in nutritive salts, causing the deterioration of its primary productivity and ultimately leading to an imbalance in the marine ecosystem. Without a consistent supply of nitrogenous nutritive salts, they are absorbed by phytoplankton, resulting in a considerable problem in primary productivity. To solve this issue, a floating type of artificial upwelling system is suggested to artificially pump up, distribute, and diffuse deep seawater containing rich nutritive salts. The key technologies for developing such a floating artificial upwelling system are a floating offshore structure with a large diameter riser, self-supplying energy system, density current generating system, method for estimating the emission and absorption of CO2, and way to evaluate the primary production variation. Strengthening the primary production of the sea by supplying deep seawater to the sea surface will result in a sea environment with abundant fishery resources.

A Study on the Floating OWC Chamber Motion in Waves (부유기 OWC 챔버의 파중 운동해석)

  • 홍도천
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.19-27
    • /
    • 2002
  • The motion of a floating OWC chamber in waves is studied taking account of fluctuating air pressure in the air chamber. An atmospheric pressure drop occurs across the upper opening of the chamber which causes not only hydrodynamic but also pneumatic added mass and damping forces to the floating chamber. A velocity potential in the water due to the free surface oscillating pressure patch is added to the conventional radiation-diffraction potential problem. the potential problem inside the chamber is formulated by making use of the Green integral equation associated with the Rankine Green function wile the outer problem with the Kelvin Green function. The two integral equations are solved simultaneously by making use of a matching boundary condition at the lower opening of the chamber to the outer water region. The chamber motion in the frequency domain is calculated for various values of parameters related to the atmospheric pressure drop. The present methods can also be sued for the analysis of air-cushion vehicle motion as well as for the design of a floating OWC wave energy absorber.