• Title/Summary/Keyword: Floating shield

Search Result 10, Processing Time 0.036 seconds

A Finite Element Analysis on the Influence of Floating Shield of a Vacuum Interrupter to the Insulation (진공 인터럽터의 차폐판이 절연에 미치는 영향의 유한요소해석)

  • 최승길;심재학;강형부
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.113-116
    • /
    • 1998
  • This study should investigate to what extent the electric field of a vacuum interrupter might be influenced by the electric potential of floating arc shield. The electric potentials of floating shield and electric fields of a vacuum interrupter are analysed by a finite element method against variation of gap distances from 1mm to 12mm. The electric potentials of floating shield was increased with the gap distance, which is because the relative position of shield is closer to fixed contact so that the capacitance distribution inside interrupter is varied. The calculated results show that the maximum value of electric field of a vacuum interrupter with floating shield is nearly same to that without shield at shorter gap distance(below 5mm), however at larger gaps a significant increment of electric field is achieved in interrupter with shield companying with model without shield, which is due to the influence of charged floating shield.

  • PDF

An Electric Field analysis of a Vacuum Interrupter by 3 Dimensional Finite Element Method (3차원 유한요소법에 의한 진공 인터럽터의 전계해석)

  • Choi, Seung-Kil;Shim, Jae-Hak;Kang, Hyung-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.913-915
    • /
    • 1998
  • This paper describes the application of two and three dimensional electric field analysis for vacuum interrupter with spiral contacts. The electric potentials of floating arc shield and electric fields in a vacuum interrupter are analysed at various gap distances from 1mm to 12mm. The electric potentials of floating shield is increased with the gap distance, which is because the relative position of shield is closer to the fixed contact so that the capacitance distribution inside interrupter is varied. The calculated results show that the maximum value of electric field in a vacuum interrupter with floating shield is nearly same to that without shield at short gap distance below 5mm, however at longer gaps more intensive electric field is achieved in interrupter with shield comparing with the model without shield, which is due to the influence of charged floating shield.

  • PDF

Electric Field Distribution of High Voltage Polymer Bushing with Inner Field Shaper Designs (초고압 폴리머 부싱의 내부쉴드 형상에 따른 전계분포 특성)

  • Cho, Han-Goo;Yoo, Dae-Hoon;Kang, Hyung-Kyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.369-370
    • /
    • 2008
  • This paper describes the electric field distribution of high voltage polymer bushing with inner field shaper designs. The field control can be achieved by means of the designs of such internal field shaper. But high electric stress occurred between field shaper and central conductor by the closely space. In accordance, the floating and ring shield designs was importance for electric stress grading at critical parts of the bushing. The bushing has a central conductor, and internal ring shield or floating shield, gaps are formed between field shaper and ring shield. Accordance equipotential lines extend through gaps. Maxwell 2D simulator based on the boundary element method was also introduced in order to verify the reliability of the polymer bushing.

  • PDF

A Study on the Design of Compact Polymer Bushing with Inner Control Shield (내부쉴드 구조에 따른 컴팩트한 폴리머 부싱 설계에 관한 연구)

  • Cho, Han-Goo;Yoo, Dae-Hoon;Kang, Hyung-Kyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.436-442
    • /
    • 2009
  • This paper describes a study on the design of compact polymer bushing with inner control shield. In the bushing, a high electric stress occurred between field shaper and central conductor by the closely space. Also coaxial cylindrical shield has a great height along the axis to control an electric field. Consequently, all the potentials are raised axially along the field shaper and electric stress is concentrated on a part of the surface of the FRP tube near the upper end of the field shaper. In accordance, the field control can be achieved by means of the designs of such inner control shields. The floating and ring shield designs was decreased electric field concentration at critical parts of the bushing. The shield gaps is formed between field shaper and ring shield. Accordance equipotential lines extend through gaps. As a result, the resulting electrical stress are thus reduced in the range $17{\sim}23%$ in the bushing with floating and ring shield designs. Maxwell 2D simulator based on the boundary element method was also introduced in order to verify the reliability of the polymer bushing. The optimized design uses internal elements for electric stress grading at critical parts of the bushing.

Three-Dimensional Finite Element Analysis of a Vacuum Interrupter (진공 인터럽터의 3차원 유한요소해석)

  • Choi, Seung-Kil;Kang, Hyung-Boo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.10
    • /
    • pp.693-698
    • /
    • 1999
  • Vacuum interrupters have a special asymmetric electrode structure to generate an magnetic field and consequently to increase the interrupting ability. Accordingly 2-dimensional analysis has a large analysis error because radial flux can not be considered. In this paper, in order to analyse the electric field distribution of a vacuum interrupter with arc shield more accurately, 3-dimensional finite element method(FEM) is used. The induced electric potentials of floating shield was increased with the gap distance, which is because the relative position of shield is closer to the fixed contact so that the capacitance distribution inside interrupter is varied. The calculated results also show that the induced potential of shield causes electric field distortion so that the maximum value of electric field in a vacuum interrupter with arc shield is higher than that without one.

  • PDF

Optimal Design of Shield for Vacuum Interrupter using Evolution Strategy (진화 알고리즘을 이용한 진공 차단기의 쉴드 형상 최적 설계)

  • Joo, Hyun-Woo;Park, Seok-Weon;Kim, Young-Keun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.127-127
    • /
    • 2010
  • This study describes the optimal design of shield to improve the insulation performance of vacuum interrupter(VI). Axi-symmetric finite element routine including floating boundary condition for shields was applied to analyze electric potential and field distribution in VI. A ($\mu-\lambda$) Evolution Strategy(ES) is employed as optimization method. Three design variables of shield are selected for minimizing the maximum electric field strength in VI. Finally, optimal solution for shield is obtained and compared with the result of the prototype.

  • PDF

Numerical Study on Characteristics and Control of Heading Angle of Floating LNG Bunkering Terminal for Improvement of Loading and Off-loading Performance

  • Oh, Seunghoon;Jung, Dong-Woo;Kim, Yun-Ho;Kwak, Hyun-Uk;Jung, Jae-Hwan;Jung, Sung-Jun;Park, Byeongwon;Cho, Seok-Kyu;Jung, Dongho;Sung, Hong Gun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.77-88
    • /
    • 2020
  • In this study, heading characteristics and heading control performances were evaluated to achieve the wave shield effect. The wave shield effect originating from heading control reduces the relative motions of moored vessels in a floating liquefied natural gas bunkering terminal (FLBT). Therefore, loading and off-loading performances are improved through reduced relative motion. For the objective of this study and efficiency of the analysis, a simplified model was used that assuming no relative motion of the moored vessels in the FLBT. The simplified model involved modeling the environmental loads and inertia of several floating bodies, including FLBT, into the environmental loads and inertia of a single vessel. The simplified model was validated through comparisons with model tests. With the simplified model, heading characteristics and heading control simulations were performed using low-frequency planar motion equations. The heading characteristics and heading control performances of FLBT were analyzed through the results of simulations under the expected environmental conditions. The capacity of the tunnel thrust for the heading control performance was confirmed to be adequate for improvement of the loading and off-loading performances using the wave shielding effects under the operation conditions.

Design Optimization and Performance of High Voltage Composite Bushing

  • Jo, Han-Gu;Gang, Hyeong-Gyeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.234-234
    • /
    • 2009
  • This paper illustrates the use of electric field computation to optimize the design of high voltage composite bushing. In the bushing, a high electric stress occurred between field shaper and central conductor by the closely space. Also coaxial cylindrical shield has a great height along the axis to control an electric field. Consequently, all the potentials are raised axially along the field shaper and electric stress is concentrated on a part of the surface of the FRP tube near the upper end of the field shaper. Maxwell 2D simulator based on the boundary element method was also introduced in order to verify the reliability of the polymer bushing. The optimized design uses internal elements for electric stress grading at critical parts of the bushing.

  • PDF

Design Optimization and Performance of High Voltage Composite Bushing (초고압 컴포지트 부싱의 최적설계 및 성능에 관한 연구)

  • Cho, Han-Goo;Kim, Kwang-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.35-35
    • /
    • 2010
  • This paper illustrates the use of electric field computation to optimize the design of high voltage composite bushing. In the bushing, a high electric stress occurred between field shaper and central conductor by the closely space. Also coaxial cylindrical shield has a great height along the axis to control an electric field. Consequently, all the potentials are raised axially along the field shaper and electric stress is concentrated on a part of the surface of the FRP tube near the upper end of the field shaper. Maxwell 2D simulator based on the boundary element method was also introduced in order to verify the reliability of the polymer bushing. The optimized design uses internal elements for electric stress grading at critical parts of the bushing.

  • PDF

Practical Research on the Advanced Detention Pond for the Improvement of Water Quality of Agricultural Reservoir (농업용저수지의 수질개선을 위한 오염물질 침강지 조성 기법)

  • Pae, Yo Sop;Nam, Gui Sook
    • Journal of Wetlands Research
    • /
    • v.10 no.3
    • /
    • pp.79-86
    • /
    • 2008
  • To improve water quality for agricultural use, it is needed to introduce the natural and low-cost self-purification system. It is also necessary to develop the water purification facilities for more efficient and convenient design, construction, operation and management. This study aims to develop the practical facilities to improve water quality for agricultural use. The practical detention pond system, which uses artificial floating island and shield skirts with bio-media, enhanced removal efficiencies of SS, TN and TP more particularly than the detention pond using an auxiliary dam. The removal efficiencies SS, TN and TP for the practical detention pond were 55.7%, 61.0% and 55.9%, respectively. The facilities of the practical detention pond has a lot of disadvantages such as the low-cost and high efficiency as well as uncountable impacts regarding ecology and landscape. However, an auxiliary dam is recommended to be installed in shallow depth due to low efficiency.

  • PDF