• Title/Summary/Keyword: Floating media filter

Search Result 11, Processing Time 0.028 seconds

Study on Algae and Turbidity Removal by Floating-media and Sand Filter (부상여재 및 모래 여과장치에 의한 조류와 탁도 제거에 관한 연구)

  • Kwon, Dae-Young;Kwon, Jae-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.659-668
    • /
    • 2012
  • In Korea, almost every water treatment plant suffers from seasonal problem of algae and turbidity which result from eutrophication and heavy rainfall. To relieve this problem, experimental investigation was performed to study the applicability of a floating-media and sand filter to preliminary water treatment in terms of algae and turbidity removal. Experimental results using pure-cultured algae influent showed that the shape of algae species as well as filtration velocity affects the removal efficiency. From the experiments using natural river water, it was concluded that algae removal is more sensitive to floating-media depth but turbidity more sensitive to sand depth. As the filtration velocity increased, the removal of turbidity decreased but that of algae was not affected. The floating-media and sand filter removed more than 30 % of TP, TN, turbidity, Chl-a and CODcr, and less than 20 % of DOC and $UV_{254}$.

Reduction of waterborne microorganisms in treated domestic wastewater for reuse in agriculture: Comparison between floating media filter and sand filter

  • Semsayun, Chalanda;Chiemchaisri, Wilai;Chiemchaisri, Chart;Patchanee, Nopparat
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.403-409
    • /
    • 2015
  • This study aims to investigate the use of a floating media filter (FMF) to eliminate waterborne microorganism in treated domestic wastewater for reuse in agriculture. A conventional sand filter (SF) was used concurrently to compare treated water quality. The total/fecal coliforms and somatic coliphage were employed as fecal indicators. The result showed that the FMF was fed with 3 times higher infiltration rate ($15m^3/m^2.h$) than that in the SF ($5m^3/m^2.h$), in which both filters gave similar coliform removal at 6 hours operation. The somatic coliphage elimination tended to increase with operational time for the FMF while that of the SF showed decreasing trend. When a 24 hour continuous operation was applied for the FMF, it showed better removal of somatic coliphage (78%), fecal coliforms (60%) and total coliforms (56%) than that of 6 hour operation. In conclusion, the FMF gave better performance than the SF did by producing a good quality of treated water for agriculture in terms of waterborne microorganisms including turbidity and suspended solids.

A Novel High Rate Flocculator/Filter in Water and Wastewater Treatment (상하수처리를 위한 새로운 고효율 응집/여과 장치)

  • Vigneswaran, S.;Ngo, H.H.;Kwon, Dae-young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.149-154
    • /
    • 2005
  • Conventionally used flocculation tanks require large space and high energy requirement for mixing. Static flocculators using gravel bed filter operate at a lower flow rate ($5-10m^3/m^2{\cdot}h$). Further, the cleaning of this system is difficult. A novel high rate static flocculator/filter developed at UTS packed with buoyant media such as polystyrene, polypropylene has been found to operate at higher filtration rates (30-45 $5-10m^3/m^2{\cdot}h$). They can easily be cleaned with minimal energy. Detailed experiments conducted with an artificial kaolin clay solution show that buoyant media is an excellent static flocculator in producing uniform filterable microflocs (12-15 m) even when it is operated at a high rate of 30-40 m/h. Detailed filtration experiments were conducted in a wastewater treatment plant to treat the biologically treated effluent with a floating media of depth of 120 cm. This filter was able to remove majority of phosphorus and remaining solids. It reduced significantly the fecal coliforms and fecal streptoccoci, thus requiring less amount of chlorine for disinfection. The advantage of this system is the low energy and water requirement for cleaning of filter bed. The periodic backwash adopted 30 seconds air and water and 30 seconds water cleaning every 90 minutes filter operation. Thisis equivalent to 1-2% of filtered water production. Mechanical cleaning system on the other hand, requires very low energy requirement (<1% of filtered water production).

Denitrification of Anaerobic Sludge in Hybrid type Anaerobic Reactor(I): Acetate as Substrate (Hybrid type 반응조에서의 혐기성 슬러지의 탈질(I): 초산을 기질로 사용한 경우)

  • Shin, Hang-Sik;Kim, Ku-Yong;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.4
    • /
    • pp.35-44
    • /
    • 1999
  • In this study, it was attempted to remove nitrate and carbon in a single-stage reactor using acetate as substrate. Hybrid type upflow sludge baffled filter reactor was adopted using anaerobic sludge. Sludge bed in the bottom of reactor was intended to remove carbon and nitrate by denitrification and methanogenesis. And floating media in the upper part of reactor were intended to remove remaining carbon which was not removed due to the inhibition of nitrogen oxide on methane producing bacteria. The reactor removed over 96% of COD and most of nitrate with volumetric loading rate of $4.0kgCOD/m^3{\cdot}day$, hydraulic retention time of 24hr, 4,000mgCOD/L, and $266mgNO_3-N/L$. Nitrate in anaerobic sludge was converted to nitrogen gas(denitrification) or ammonia (ammonification) according to pH of influent, COD removal efficiency was easily affected by the change of volumetric loading rates and nitrate concentration. And when influent pH was about 4.7, most nitrate changed to ammonia while when influent pH was about 6.8~7.0, most nitrate denitrified independent of $COD/NO_3-N$ ratio. Most granules were gray and a few were black. In gray-colored granule, black inner side was covered with gray substance and SEM illustrated Methanoccoci type microorganisms which were compact spherical shape. Anaerobic filter removed residual COD effectively which was left in sludge bed due to the inhibition of nitrogen oxide.

  • PDF

The Effect of Floating Wetland on Water Quality Improvement in a Eutrophic Lake (부유습지를 이용한 부영양수계 현장 수질개선 효과)

  • Park, Chae-Hong;Park, Myung-Hwan;Choi, Dong-Ho;Choi, Hyung-Joo;Lee, Joon-Heon;Lee, Myung-Hoon;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.116-127
    • /
    • 2013
  • At weekly intervals, we monitored continuous changes in water quality by constructed floating wetland equipped with the four different filter media (sponge, volcanic stone, activated carbon and magnesium hydroxide) in a eutrophic lake from March 2011 to May 2012. We also investigated phyto- and zooplankton communities both in the influent and the effluent water through the floating wetland. Over a 10-month time period, average turbidity (66%), suspended solids (79%) and chlorophyll-a (80%) concentrations were remarkably reduced in the effluent water compared to the influent (P<0.001). The average removal rates of $NO_2-N$ and $NH_3-N$ were 24% and 20%, respectively (P<0.05). The average removal rates of $NO_3-N$ and TN were less than 10% (P>0.05). On the other hand, the average removal rates of $PO_4-P$ and TP were more than 65% (P<0.01). Interestingly, the abundance of phytoplankton in the effluent was decreased about 2.6 times compared to that of the influent, whereas the abundance of zooplankton in the effluent was increased about 3.5 times compared to that of the influent. Overall, particulate matters (SS, Chl-a and TP) and dissolved nutrients ($NO_2-N$, $NH_3-N$ and $PO_4-P$) were particularly reduced at high rates. Therefore, application of our constructed floating wetland in a eutrophic lake improved the water quality and demonstrated a potential for algal bloom mitigation.

Evaluation of Swine Wastewater Pretreatment Using Anaerobic Filter (Anaerobic Filter에 의한 양돈폐수의 전처리 특성 평가)

  • Kang, Ho;Moon, Seo-yeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.7
    • /
    • pp.418-425
    • /
    • 2015
  • Anaerobic Filters (AF) packed with porous ceramic floating media were operated at different operational conditions to identify the feasibility of the renewable bioenergy, methane production from swine wastewater and to verify the suitability of effluent from anaerobic filters for the subsequent biological nitrogen and phosphorus removal. Stepwise increase in organic loading rates (OLRs) or decrease in hydraulic retention times (HRTs) with influent TCOD concentration of 14,000 mg/L were utilized at mesophilic temperature. The maximum methane productivity of 1.74 volume of $CH_4$ per volume of reactor per day (v/v-d) was achieved at an hydraulic retention time (HRT) of 0.5 day (OLR 28 g TVS/L-d). Based on the biogas production, the highest total volatile solids (TVS) removal efficiency of 63% was obtained at an HRT of 3 days (OLR 4.67 g TVS/L-d), however based on the result from the effluent total chemical oxygen demand (TCOD) analysis, the highest TCOD removal efficiency of 75% was achieved. The effluent alkalinity concentration over the range of 2,050~2,980 mg/L as $CaCO_3$ at all operational conditions, could compensate the alkalinity destruction caused by nitrification. The effluent from the anaerobic filter operated under the HRT of 2 days showed the COD/TKN ratio of 15~35 and COD/TP ratio of 38~56. Therefore effluent C/N/P ratio is able to satisfy the optimum COD/TKN ratio of greater than 8.0 and COD/TP ratio of 33 for the subsequent biological nutrient removal.

Design and operating parameters of multi-functional floating island determined by basic experiments of unit processes (단위공정별 기초실험을 통한 다기능 융복합부도의 설계·운전인자 도출)

  • Lim, Hyun-Man;Jang, Yeo-Ju;Jung, Jin-Hong;Yoon, Young-Han;Park, Jae-Roh;Kim, Weon-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.6
    • /
    • pp.487-497
    • /
    • 2018
  • Water quality improvement processes for stagnant area consist mainly of technologies applying vegetation and artificial water circulation, and these existing technologies have some limits to handle pollution loads effectively. To improve the purification efficiency, eco-friendly technologies should be developed that can reinforce self-purification functions. In this study, a multi-functional floating island combined with physical chemical biological functions ((1) flotation and oxidization using microbubbles, (2) vegetation purification and (3) bio-filtration with improved adsorption capacity) has been developed and basic experiments were performed to determine the optimal combination conditions for each unit process. It has been shown that it is desirable to operate the microbubble unit process under conditions greater than $3.5kgf/cm^2$. In vegetation purification unit process, Yellow Iris (Iris pseudacorus) was suggested to be suitable considering water quality, landscape improvement and maintenance. When granular red-mud was applied to the bio-filtration unit process, it was found that T-P removal efficiency was good and its value was also stable for various linear velocity conditions. The appropriate thickness of filter media was suggested between 30 and 45 cm. In this study, the optimal design and operating parameters of the multi-functional floating island have been presented based on the results of the basic experiments of each unit process.

Development of air-sterilization purification system of fusion and composite structure using broadband-to-active photocatalyst (광대역대 활성광촉매를 활용한 융·복합 구조 공기살균정화장치 개발)

  • Yoon, Sueng-Bae;Hwang, Yun-Jung;Kim, Seung-Cheon
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.147-151
    • /
    • 2019
  • Modern people spend most of their daily lives in their homes, schools, or workplaces, hospitals, shopping malls, subway stations, rooms, and parking lots. According to the survey, air quality management at the multi-use facility is less than 50% satisfied. In this study, a photocatalytic filtration system is developed by utilizing a broadband-to-active photocatalyst that utilizes a media photocatalyst filter that removes airborne germs from indoor air as well as indoor air quality and operates on visible light as well as ultraviolet light.

Adaptive Wavelet Transform for Hologram Compression (홀로그램 압축을 위한 적응적 웨이블릿 변환)

  • Kim, Jin-Kyum;Oh, Kwan-Jung;Kim, Jin-Woong;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.26 no.2
    • /
    • pp.143-154
    • /
    • 2021
  • In this paper, we propose a method of compressing digital hologram standardized data provided by JPEG Pleno. In numerical reconstruction of digital holograms, the addition of random phases for visualization reduces speckle noise due to interference and doubles the compression efficiency of holograms. Holograms are composed of completely complex floating point data, and due to ultra-high resolution and speckle noise, it is essential to develop a compression technology tailored to the characteristics of the hologram. First, frequency characteristics of hologram data are analyzed using various wavelet filters to analyze energy concentration according to filter types. Second, we introduce the subband selection algorithm using energy concentration. Finally, the JPEG2000, SPIHT, H.264 results using the Daubechies 9/7 wavelet filter of JPEG2000 and the proposed method are used to compress and restore, and the efficiency is analyzed through quantitative quality evaluation compared to the compression rate.

Development and Application of Multi-Functional Floating Wetland Island for Improving Water Quality (수질정화를 위한 다기능 인공식물섬의 개발과 적용)

  • Yoon, Younghan;Lim, Hyun Man;Kim, Weon Jae;Jung, Jin Hong;Park, Jae-Roh
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.221-230
    • /
    • 2016
  • Multi-functional floating wetland island (mFWI) was developed in order to prevent algal bloom and to improve water quality through several unit purification processes. A test bed was applied in the stagnant watershed in an urban area, from the summer to the winter season. For the advanced treatment, an artificial phosphorus adsorption/filtration medium was applied with micro-bubble generation, as well as water plants for nutrient removal. It appeared that the efficiency of chemical oxygen demand (COD) and total phosphorus (T-P) removal was higher in the warmer season (40.9%, 45.7%) than in the winter (15.9%, 20.0%), and the removal performance (suspended solid, chlorophyll a) in each process differs according to seasonal variation; micro-bubble performed better (33.1%, 39.2%) in the summer, and the P adsorption/filtration and water plants performed better (76.5%, 59.5%) in the winter season. From the results, it was understood that the mFWI performance was dependent upon the pollutant loads in different seasons and unit processes, and thus it requires continuous monitoring under various conditions to evaluate the functions. In addition, micro-bubbles helped prevent the formation of anaerobic zones in the lower part of the floating wetland. This resulted in the water circulation to form a new healthy aquatic ecosystem in the surrounding environment, which confirmed the positive influence of mFWI.