• Title/Summary/Keyword: Floating floor system

Search Result 34, Processing Time 0.028 seconds

The effect of dynamic property of absorbing sheet on the amplification of heavy weight floor impact noise (완충재의 동특성에 따른 중량충격음 증폭에 관한 해석적 연구)

  • Hwang, J.S.;Moon, D.H.;Park, H.G.;Hong, S.G.;Hong, Geon-Ho;Lim, J.H.;Kim, Y.N.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.527-528
    • /
    • 2010
  • Previous experimental results performed by many researchers for a couple of decades in South Korea have shown that an absorbing sheet inserted in a conventional floating slab system for thermal insulation or vibration absorption may amplify the vibration of the slab system at specific frequency ranges depending on the material properties of the sheet. The amplified vibration, consequently, results in the heavy weight floor impact noise exceeding the sound level limit for an apartment house, 50dB. In this study, the amplification mechanism is examined through numerical analysis and a new slab system is proposed to reduce the amplification and control the noise. The new slab system consists of studs connecting the base slab and upper concrete finishing yielding the dramatically increased stiffness of the slab. The numerical simulation is performed to investigate the effect of the slab system with studs on the vibration and noise control. The results show that the performance of the slab is sensitive to the number and location of studs, and the heavy weight floor impact noise can be reduced up to 6-7dB compared to the conventional slab system at the optimal stud location.

  • PDF

Design of a Wheeled Blimp

  • Sungchul Kang;Mihee Nam;Park, Changwoo;Kim, Munsang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.30.5-30
    • /
    • 2001
  • This paper describes a new design of blimp having wheeled vehicle part. This system can work both on the ground using wheeled vehicle and in the air using the floating capability of the blimp part. The passive wheeled mechanism in the vehicle part enables the stable taking off, landing on as well as it is greatly helpful to keep a stationary position on the floor. On the other hand, the floating capability enables the wheeled blimp to fly freely regardless of the ground condition or obstacles. The wheeled blimp can be used as an agent robot for the tole-presence application. Using multimedia devices such as camera, speaker, LCD and microphone mounted on the blimp surface, this system can get necessary information at the local site and communicate with person from a distance. As a typical tele-presence application, the wheeled blimp is currently being developed to a tole-guidance robot working in public indoor areas such 35 exhibition halls, departments, hospitals, etc ...

  • PDF

A Study on characteristics of vibration of a floating slab track according to change of stiffness of track (궤도하부강성 변화에 따른 방진슬라브 궤도의 진동특성 연구)

  • 강윤석;양신추;오지택
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.572-579
    • /
    • 1998
  • In this paper, an analytical model for analyzing the interaction between train and floating slab track is presented. Train is modelled by 4-lumped masses system which are composed of a carbody supported by secondary suspension, a bogie frame supported by primary suspension, and two wheelsets supported by nonlinear Hertzian springs. In the track model, rail is considered to have a distributed mass and to be supported discretely at sleepers above ballast on slab. The slab supported by discrete isolators put on fixed floor is modelled by finite beam elements. Numerical analyses are carried out to examine anti-vibration effect of the GERB slab track which is same type laid in Puchon station on the subway No. 7 Line.

  • PDF

The dynamic response of a prototype steel floor using velocity-source type of excitation

  • Magalhaes, Max D.C.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.371-385
    • /
    • 2013
  • Vibration isolators and anti-vibration mounts are ideal, for example, in creating floating floors for gymnasiums, or performance spaces. However, it is well-known that there are great difficulties on isolating vibration transmission in structural steel components, especially steel floors. Besides, the selection of inertia blocks, which are usually used by engineers as an effective vibration control measure, is usually based on crude methods or the experience of the engineers. Thus, no simple method or indices have been available for assessing the effect of inertia blocks on vibration isolation or stability of vibratory systems. Thus, the aims of this research are to provide further background description using a FE model and present and implement a modal approach, that was validated experimentally, the latter assisting in providing improved understanding of the vibration transmission phenomenon in steel buildings excited by a velocity-source type of excitation. A better visualization of the mean-square velocity distribution in the frequency domain is presented using the concept of modal expansion. Finally, the variation of the mean-square velocity with frequency, whilst varying mass and/or stiffness of the coupled system, is presented.

Development of Air Cushion Transporter Using the Pneumatic Floating Pad (공기부양판을 적용한 에어쿠션 트랜스포터의 개발)

  • Jung, Hyunmok;Hong, Junhee;Yun, Dongwon;Park, Heechang;Kim, Byungin;Lee, Sunghwi
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.338-344
    • /
    • 2016
  • Recent trends in transport system for carrying heavy freight are that demands of a high efficiency, economic efficiency, convenience and safety are increased. Conventional transport systems were poor in transport efficiency and economic efficiency. And Safety problems can be caused to products and workers. In order to overcome these problems, an air cushion transport device with a high-pressure air is required. The air cushion transporter is a device for reducing the frictional force of floor surface and lifting the heavy freight by spraying the high-pressure air to the floor. Technology to float and transfer freight using high-pressure air is very convenient and initial cost can be reduced. In this paper, the study on the levitation performance and transport efficiency of air cushion transport system is conducted and verified that air cushion transporter has a significantly higher transport efficiency than conventional heavy handling systems.

A Study on Quality Characteristic and Stability Improvement of Vibration-Proof Polyurethane Mat (방진용 폴리우레탄 매트의 물리적 특성과 안정성 향상에 관한 연구)

  • Woo, Kyung-Ha;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Along with industrial development, various architectural structures have become bigger and higher, leading to an expansion in the size and capacity of construction equipment. And with the development of public transportation, the use of subways as a means of transportation in the city center is increasing, so that vibrations and structural noises are emerging as a new environmental issue. Considering that architectural structures may be used from several decades to hundreds of years after the time of construction, they can be seen as semi-permanent. Due to changes in the vibration-proof polyurethane mats installed in the foundation of these structures, settling may occur and vibration reduction may become inadequate. Therefore, in view of service life, it is necessary to have a high-level standard of reliability and stability. In accordance with this, the Floating Floor System, which uses soft polyurethane foam and can be constructed within a relatively short period of time, has excellent vibration resistant characteristics. It is presented as a great alternative solution to the issue of vibrations caused by subways, railways and building structures. At present, vibration-proof polyurethane mats have been developed up to the same product level as in other advanced countries. However, in the construction of structure foundations, the physical properties of this product and its shape incur changes. If they are installed as such in the structure of a building, it may cause significant impact on stability, requiring that this cause be urgently identified and improved.

Heavy-weight Impact Noise Reduction of Concrete Slab Reinforcement Using F.R.P (F.R.P 재료 보강에 의한 신개념 중량충격음 저감대책)

  • Jeong, Jeong-Ho;Yoo, Seung-Yup;Lee, Pyoung-Jik;Jeon, Jin-Yong;Jo, A-Hyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.383-386
    • /
    • 2005
  • Low frequency heavy-weight impact noise is the most irritating noise in Korean high-rise reinforced concrete apartment buildings. This low frequency noise is generated by foot traffic due to the fact that Koreans do not wear shoes at home. The transmission of the noise is facilitated by a load bearing wall structural system without beams and columns which is used in these buildings. In order to control low frequency heavy-weight impact noise, floating floors using isolation materials such as glass-wool mat and poly-urethane mat are used. However, it was difficult to control low frequency heavy-weight impact sound using isolation material. In this study, reinforcement of concrete slab using beams and plate was conducted. Using the FEM analysis, the effect of concrete slab reinforcement using FRP(fiber-glass reinforced plastic) on the bang machine impact vibration acceleration level and sound were conducted at the standard floor impact sound test building. The $3{\sim}4dB$ floor impact vibration acceleration level and impact sound pressure level were reduced and the natural frequency of slabs were changed.

  • PDF

Wheeled Blimp: Hybrid Structured Airship with Passive Wheel Mechanism for Tele-guidance Applications

  • Kang, Sung-Chul;Nam, Mi-Hee;Kim, Bong-Seok
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1941-1948
    • /
    • 2004
  • This paper presents a novel design of indoor airship having a passive wheeled mechanism and its stationary position control. This wheeled blimp can work both on the ground using wheeled vehicle part and in the air using the floating capability of the blimp part. The wheeled blimp stands on the floor keeping its balance using a caster-like passive wheel mechanism. In tele-guidance application, stationary position control is required to make the wheeled blimp naturally communicate with people in standing phase since the stationary blimp system responds sensitively to air flow even in indoor environments. To control the desired stationary position, a computed torque control method is adopted. By performing a controller design through dynamic analysis, the control characteristics of the wheeled blimp system have been found and finally the stable control system has been successfully developed. The effectiveness of the controller is verified by experiment for the real wheeled blimp system.

Wave Reflection and Transmission Characteristics of Flap-type Floating Breakwaters (플랩형 부유 방파제의 파랑 반사 및 전달 특성)

  • Jeong, Shin-Taek;Park, Woo-Sun;Kim, Jeong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2141-2145
    • /
    • 2008
  • Three kind of system composed with buoyant flap hinged at the sea floor are modeled experimentally. The mechanically coupled system provides shelter by reflecting incident waves and by attenuating wave energy through structural and viscous damping. The characteristics of wave reflection, transmission and dynamic angle of the flap oscillation for various conditions were investigated. The structure can minimize wave transmission by attaching offshore wing wall.

  • PDF

The Structural Engineering Design And Construction Of The Tallest Building In Europe Lakhta Center, St. Petersburg. Russia

  • Abdelrazaq, Ahmad;Travush, Vladimir;Shakhvorostov, Alexey;Timofeevich, Alexander;Desyatkin, Mikhail;Jung, Hyungil
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.3
    • /
    • pp.283-300
    • /
    • 2020
  • The Lakhta Center is a Multifunction Complex Development (MFCD) consisting of 1) an 86 story office tower rising 462 m above the ground to provide high-end offices for Gazprom Neft and Gazprom Group affiliates 2) a Multi-Function Building (MFB) that includes, a scientific/educational center, a sport center, a children's technopark, a planetarium, a multi-transformable hall, an exhibition center, shops, restaurants, and other public facilities 3) a Stylobate 4) "The Arch, which forms the main entrance to the tower, restaurants, and cafes 5) underground parking and 6) a wide range of large public plazas. While each of the MFCD buildings is technically challenging in its own right, the focus of the paper is to present the development and integration of the structural and foundation systems of the bowed, tapered, and twisted shape of the tower into the fabric of the tallest Tower in Europe.