• Title/Summary/Keyword: Floating architecture

Search Result 430, Processing Time 0.025 seconds

Experimental study on moonpool resonance of offshore floating structure

  • Yang, Seung-Ho;Kwon, Sun-Hong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.313-323
    • /
    • 2013
  • Offshore floating structures have so-called moonpool in the centre area for the purpose of drilling, installation of subsea structures, recovery of Remotely-Operated Vehicle (ROV) and divers. However, this vertical opening has an effect on the operating performance of floating offshore structure in the vicinity of moonpool resonance frequency; piston mode and sloshing mode. Experimental study based on model test was carried out. Moonpool resonance of floating offshore structure on fixed condition and motion free condition were investigated. And, the effect of cofferdam which is representative inner structure inside moonpool was examined. Model test results showed that Molin's theoretical formula can predict moonpool resonance on fixed condition quite accurately. However, motion free condition has higher resonance frequency when it is compared with that of motion fixed. The installation of cofferdam moves resonance frequency to higher region and also generates secondary resonance at lower frequency. Furthermore, it was found that cofferdam was the cause of generating waves in the longitudinal direction when the vessel was in beam sea.

Validation of a 750 kW semi-submersible floating offshore wind turbine numerical model with model test data, part I: Model-I

  • Pham, Thanh Dam;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.980-992
    • /
    • 2019
  • This paper describes a model test and numerical simulation of a 750-kW-semi-submersible platform wind turbine under several wind and wave conditions for validation of the numerical simulation model. The semi-submersible platform was designed to support the 750-kW-wind turbine class and operate at a water depth of 50 m. The model tests were performed to estimate the performance characteristics of the wind turbine system in the wide tank of the University of Ulsan. Motions and loads of the wind turbine system under the wind and wave conditions were measured and analyzed. The NREL-FAST code was used to simulate the wind turbine system, and the results were compared with those of the test model. The results demonstrate that the numerical simulation captures noticeably the fully coupled floating wind turbine dynamic responses. Also, the model shows a good stability and small responses during waves, wind, and operation of the 750-kW-floating offshore wind turbine.

Hydroelastic Behavior for a Very Lagre Floating Structure of Poontoon-Type in Multi-Directional Irregular Waves (다방향불규칙파중의 Pontoon형의 초대형부유식해양구조물에 대한 유탄성응답 특성)

  • Kim, Chel-Hyun;Jo, Hyo-Jae;Lee, Seung-Chul;Goo, Ja-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.83-90
    • /
    • 2006
  • Recently, as the technology of utilization for the ocean space is being advanced, floating structures are asked for being mare and mare huge-scale. A very large floating structure(VLFS) is considered as a flexible structure, because of a quite large length-to-breadth ratio and its geometrical flexibility. The main object of this study is to develop an accurate and convenient method on the hydroelastic response analysis of very large offshore structures on the real sea states. The numerical approach for the hydorelastic responses is based on the combination of the three dimensional source distribution methods, the dynamic response analysis method and the spectral analysis method. A model is considered as many rigid bodies connected elastic beam elements. The calculated results shaw good agreement with the experimental and calculated ones by Ohta.

Energy Efficient Architecture Using Hardware Acceleration for Software Defined Radio Components

  • Liu, Chen;Granados, Omar;Duarte, Rolando;Andrian, Jean
    • Journal of Information Processing Systems
    • /
    • v.8 no.1
    • /
    • pp.133-144
    • /
    • 2012
  • In order to make cognitive radio systems a practical technology to be deployed in real-world scenarios, the core Software Defined Radio (SDR) systems must meet the stringent requirements of the target application, especially in terms of performance and energy consumption for mobile platforms. In this paper we present a feasibility study of hardware acceleration as an energy-efficient implementation for SDR. We identified the amplifier function from the Software Communication Architecture (SCA) for hardware acceleration since it is one of the functions called for most frequently and it requires intensive floating-point computation. Then, we used the Virtex5 Field-Programmable Gate Array (FPGA) to perform a comparison between compiler floating-point support and the on-chip floating-point support. By enabling the on-chip floating-point unit (FPU), we obtained as high as a 2X speedup and 50% of the overall energy reduction. We achieved this with an increase of the power consumption by no more than 0.68%. This demonstrates the feasibility of the proposed approach.

A Study on the Regionally Customized Urban Regeneration and Maintenance of Small and Medium Cities Using Spatial Big-Data - Focused on the Residential Census Output Area - (공간 빅데이터를 활용한 중소도시 지역맞춤형 도시재생·유지관리 연구 - 주거지역 집계구를 중심으로 -)

  • Han, Da-Hyuck;Lee, Min-Seok
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.23 no.2
    • /
    • pp.9-16
    • /
    • 2021
  • The purpose of this study is to maintain the existing characteristics of the city by utilizing the physical decline status and floating population in small and medium cities residential areas. In addition, it intends to present the direction of flexible urban regeneration and maintenance by reflecting regional characteristics and current status. A total of three data were used in this study. Building data, floating population data, and census output area data were used. Building data and floating population data were classified into five classes. The graded data were joined to the census output area data and analyzed by overlapping the two data. As a result of analysis of 17 residential areas in 5 small and medium cities in Jeollanam-do, 4 types, 2 management models, and 4 indicators could be presented by grade and regional characteristics. This study is meaningful in that it is possible to plan regionally customized urban regeneration/maintenance management plans and projects through the typology of the current status and characteristics of the region, which is an important step in the bottom-up form.

A Study on the Behavior of Floating-Point Unit Conforming the ANSI/IEEE Std. 754-1985 (ANSI/IEEE Std. 754-1985에 의거한 부동소수점 연산기의 동작원리에 관한 연구)

  • Kim, Kwang-Uk;Chung, Tae-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.788-790
    • /
    • 1999
  • A software implementation of floating-point addition and multiplication is presented. For this, the ANSI/IEEE standard for binary floating-point arithmetic is reviewed briefly. The architecture and behavior of the $Intel^{(R)}\;80{\times}87$ FPU is fully studied and basic algorithms for floating-point addition and multiplication are used for the implementation. Some examples and their verifications are also presented.

  • PDF

A Numerical Study on Pontoon Type Floating Breakwaters in Oblique Waves

  • Kim, Do-Young
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 2000
  • A numerical investigation was made to examine characteristics of rectangular pontoon type floating breakwaters in oblique waves. Sway and heave wave exciting forces, roll moment acting on the floating breakwater and three motion reponses decrease as the incident wave angle increases for the most of the wave ranges. There exists a minimum wave transmission coefficient which is a function of wave frequency. In short wave range wave transmission coefficient increases as the incident wave angle increases. In long wave range, however, wave transmission coefficient decreases as the wave incident angle increases.

  • PDF

Guideline of Weight Factor for Lifting Operation by Parallel Connected Floating Cranes and Verification using Simulation (다수대의 해상크레인 병렬 운용을 위한 리프팅 하중 Factor 적용 기준 마련 및 시뮬레이션을 통한 검증)

  • Hwang, Jin-Ho;Kim, Yun-Ho;Ha, Soo-Ho;Seo, Jeong-Gil;Lee, Chan-Young;Lee, Kyu-Yeul;Park, Kwang-Phil;Cha, Ju-Hwan
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.107-114
    • /
    • 2009
  • In the recent large block are used to build the ship to improve productivity. For this reason, two or more floating cranes that are connected in parallel is the trend. Typically, when working with floating crane load safety factor is considered. Even in the parallel operation, load safety factor is calculated similar to working alone. For this reason, operations do not guarantee the reliability or excessive safety factor applied. Therefore, the subdivided cases for calculating the safety factor are defined when parallel connected floating cranes are operated. Based on those cases, the operation standard is made about procedure using parallel connected floating cranes. And to verify this, dynamics simulation was performed for verification using the dynamics simulation program.

  • PDF

Research of Design Improvement regarding Foundation Technologies for Floating LNG (Floating LNG 기반기술에 관한 설계개선 연구 (철회된 논문입니다.))

  • Lee, Dong-Hyun;Ha, Mun-Keun;Kim, Soo-Young;Shin, Sung-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.3
    • /
    • pp.220-230
    • /
    • 2014
  • Typical technical issues associated with Floating LNG (FLNG: FSRU and LNG FPSO) design are categorized in terms of global performance evaluation. Although many proven technologies developed through LNG carrier and oil FPSO projects are available for FLNG design, we are still faced with several technical challenges to clear for successful FLNG projects. In this paper, some of the challenges encountered during development of the floating LNG facility (i.e. LNG FPSO and FSRU) will be reviewed together with their investigated solution. At the same time, research of design improvement including new LNG-related technologies such as combined containment system will be presented to overcome the unrevealed challenges for the FLNG development.

Dynamic analysis of maritime gasbag-type floating bridge subjected to moving loads

  • Wang, Huan-huan;Jin, Xian-long
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.2
    • /
    • pp.137-152
    • /
    • 2016
  • This paper studied the dynamic response of a new gasbag-type floating bridge under the effect of a moving load. The arbitrary Lagrangian-Eulerian (ALE) method was used to simulate the movement of seawater and air, and the penalty-based method was used to study the coupling between gasbags and fluid. A three-dimensional finite element model of the floating bridge was established, and the numerical model was verified by comparing with the experimental results. In order to prevent resonance, the natural frequencies and flexural mode shapes were analyzed. Based on the initial state analysis, the dynamic responses of the floating bridge subjected to different moving loads were investigated. Vertical displacements and radial deformations of gasbags under different loads were compared, and principal stress distributions of gasbags were researched while driving. The hinge forces between adjacent modules were calculated to ensure the connection strength. Besides, the floating bridge under wave impacting was analyzed. Those results can provide references for the analysis and design of this new floating bridge.