• Title/Summary/Keyword: Floating Time

Search Result 630, Processing Time 0.033 seconds

Estimation of reaction forces at the seabed anchor of the submerged floating tunnel using structural pattern recognition

  • Seongi Min;Kiwon Jeong;Yunwoo Lee;Donghwi Jung;Seungjun Kim
    • Computers and Concrete
    • /
    • v.31 no.5
    • /
    • pp.405-417
    • /
    • 2023
  • The submerged floating tunnel (SFT) is tethered by mooring lines anchored to the seabed, therefore, the structural integrity of the anchor should be sensitively managed. Despite their importance, reaction forces cannot be simply measured by attaching sensors or load cells because of the structural and environmental characteristics of the submerged structure. Therefore, we propose an effective method for estimating the reaction forces at the seabed anchor of a submerged floating tunnel using a structural pattern model. First, a structural pattern model is established to use the correlation between tunnel motion and anchor reactions via a deep learning algorithm. Once the pattern model is established, it is directly used to estimate the reaction forces by inputting the tunnel motion data, which can be directly measured inside the tunnel. Because the sequential characteristics of responses in the time domain should be considered, the long short-term memory (LSTM) algorithm is mainly used to recognize structural behavioral patterns. Using hydrodynamics-based simulations, big data on the structural behavior of the SFT under various waves were generated, and the prepared datasets were used to validate the proposed method. The simulation-based validation results clearly show that the proposed method can precisely estimate time-series reactions using only acceleration data. In addition to real-time structural health monitoring, the proposed method can be useful for forensics when an unexpected accident or failure is related to the seabed anchors of the SFT.

Time Mean Drifting Forces on a Cylinder in Water of Finite Depths -Direct Pressure Integration Method- (유한(有限)깊이의 물에 떠있는 주상체(柱狀體)에 작용(作用)하는 시간평균표류력(時間平均漂流力) -직접압력(直接壓力) 적분법(積分法)-)

  • K.P.,Rhee;K.K.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.2
    • /
    • pp.27-34
    • /
    • 1985
  • In this paper, the second order time mean forces acting on the circular cylinder floating on the free surface of a finite water depth are calculated. Under the assumption that fluid is idea and the wave the linear gravity wave, the velocity potential is calculated by the source distribution method, and the second order time mean lateral and vertical drifting forces are calculated by the direct integration of fluid pressures over the immersed body surface. The comparison of the lateral drifting forces with Rhee's results by momentum theorem shows good agreements. And it is shown that the second order time sinkage forces of a floating circular cylinder cross zero for all water depths.

  • PDF

Hydroelastic Responses of a Very Large Floating Structure in Time Domain (시간영역에서 초대형 부유식 해양구조물에 대한 유탄성 응답 해석)

  • 이호영;신현경
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.29-34
    • /
    • 2000
  • This paper describes transient responses of a very floating structure subjected to dynamic load induced by waves. A time domain method is applied to the hydroelastic problems for this purpose. The method is based on source-dipole and FEM scheme and on Newmark $\beta$ method to pursuit time step process taking advantage of memory effect. The present procedure is carried out to analyze hydroelastic responses in regular waves and impact responses due to dropping aircraft.

  • PDF

Hydroelastic Responses of a Very Large Floating Structure in Time Domain (시간영역에서 초대형 부유식 해양구조물에 대한 유탄성 운동해석)

  • 이호영;신현경
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.18-22
    • /
    • 2000
  • This paper is transient motions of a very large floating structure subjected to dynamic load induced by wave. A time domain method is applied to the hydroelasticity problems for this purpose. The method is based on source-dipole and FEM scheme and on Newmark $\beta$ method to pursuit time step process taking advantage of the memory effect. The present method is appied to hydroelastic response analysis in regular waves and impact responses due to dropping aircraft.

  • PDF

Development of a Framework for Evaluating Time Domain Performance of a Floating Offshore Structure with Dynamic Positioning System (동적위치유지시스템을 이용하는 부유식 해양구조물의 시간대역 성능평가를 위한 프레임워크의 개발)

  • Lee, Jaeyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.718-724
    • /
    • 2017
  • Considerable efforts have been made to expand the boundaries of domestic offshore plant industries, which have focused on the construction of the structures, to the engineering field. On the other hand, time domain analysis, which is one of the most important areas in designing floating offshore plants, relies mainly on the information given by foreign companies. As an early design of the Dynamic Positioning System (DPS) is mostly conducted by several specialized companies, domestic ship builders need to spend time and money to reflect the analysis into the hull shape design. This paper presents the framework required to analyze time domain performance of floating type offshore structures, which are equipped with DPS. To easily perform time domain analysis, framework generates the required input data for the solver, and is modularized to test the control algorithm and performance of a certain DPS. The effectiveness of the developed framework was verified by a simulation with a model ship and the total time for the entire analysis work was reduced by 50% or more.

Balancing assembly line in an electronics company

  • 박경철;강석훈;박성수;김완희
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1993.10a
    • /
    • pp.12-19
    • /
    • 1993
  • In general, the line balancing problem is defined as of finding an assignment of the given jobs to the workstations under the precedence constraints given to the set of jobs. Usually, the objective is either minimizing the cycle time under the given number of workstations or minimizing the number of workstations under the given cycle time. In this paper, we present a new type of an assembly line balancing problem which occurs in an electronics company manufacturing home appliances. The main difference of the problem compared to the general line balancing problem lies in the structure of the precedence given to the set of jobs. In the problem, the set of jobs is partitioned into two disjoint subjects. One is called the set of fixed jobs and the other, the set of floating jobs. The fixed jobs should be processed in the linear order and some pair of the jobs should not be assigned to the same workstations. Whereas, to each floating job, a set of ranges is given. The range is given in terms of two fixed jobs and it means that the floating job can be processed after the first job is processed and before the second job is processed. There can be more than one range associated to a floating job. We present a procedure to find an approximate solution to the problem. The procedure consists of two major parts. One is to find the assignment of the floating jobs under the given (feasible) assignment of the fixed jobs. The problem can be viewed as a constrained bin packing problem. The other is to find the assignment of the whole jobs under the given linear precedence on the set of the floating jobs. First problem is NP-hard and we devise a heuristic procedure to the problem based on the transportation problem and matching problem. The second problem can be solved in polynomial time by the shortest path method. The algorithm works in iterative manner. One step is composed of two phases. In the first phase, we solve the constrained bin packing problem. In the second phase, the shortest path problem is solved using the phase 1 result. The result of the phase 2 is used as an input to the phase 1 problem at the next step. We test the proposed algorithm on the set of real data found in the washing machine assembly line.

  • PDF

A collect system of marine floating garbages by towing to the surface (표층 예인 부상식 해양 부유폐기물 수거 시스템)

  • Jang, Duck-Jong;Na, Sun-Cheol;Choi, Myung-Soo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.91-95
    • /
    • 2007
  • It tries to develop a collect system for floating garbage flowed into the sea Based on the study on the characteristics of floating garbage in rainy season, it confirmed the structure and specification of each device and tested its performance on the sea It showed tint the collection device of this system could sweep more than 15 meters of sea area at a time when a ship moves with the efficiency of the spreading device. It means tint it is more efficient in collecting garbage than now in use garbage collecting ships. The water height of the net to which the garbage is finally input maintained more 50cm within the towing speed of 5kt. It indicates tint the garbage input performance is good The collect system of this research showed good performance collecting 200kg of garbage into the net for each test of collecting floating garbage.

  • PDF

Simplified Shock Response Analysis for Submerged Floating Railway against Underwater Explosion (수중폭발에 의한 해중철도의 간이 충격 응답 해석)

  • Seo, Sung-Il;Sa-Gong, Myung;Son, Seung-Wan
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.2
    • /
    • pp.100-105
    • /
    • 2014
  • To design a submerged floating railway that is safe against underwater explosions, railway behavior must be investigated and clarified. In this paper, shock waves and impulse pressures generated by a charge away from the submerged floating railway are expressed using experimental formulas. The submerged floating railway tethered by mooring lines is modeled as a simply supported beam with elastic springs. Finite element analysis for the beam model subjected to impulse loading is conducted so that the response of the submerged floating railway can be investigated. For design purposes, a simplified analysis method combined with dynamic load factor is proposed for the same model. Maximum deformation and internal forces are calculated and compared with the time dependent analysis results. It is shown that the simplified analysis results show good agreement.

Design of a high-performance floating-point unit adopting a new divide/square root implementation (새로운 제산/제곱근기를 내장한 고성능 부동 소수점 유닛의 설계)

  • Lee, Tae-Young;Lee, Sung-Youn;Hong, In-Pyo;Lee, Yong-Surk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.12
    • /
    • pp.79-90
    • /
    • 2000
  • In this paper, a high-performance floating point unit, which is suitable for high-performance superscalar microprocessors and supports IEEE 754 standard, is designed. Floating-point arithmetic unit (AU) supports all denormalized number processing through hardware, while eliminating the additional delay time due to the denormalized number processing by proposing the proposed gradual underflow prediction (GUP) scheme. Contrary to the existing fixed-radix implementations, floating-point divide/square root unit adopts a new architecture which determines variable length quotient bits per cycle. The new architecture is superior to the SRT implementations in terms of performance and design complexity. Moreover, sophisticated exception prediction scheme enables precise exception to be implemented with ease on various superscalar microprocessors, and removes the stall cycles in division. Designed floating-point AU and divide/square root unit are integrated with and instruction decoder, register file, memory model and multiplier to form a floating-point unit, and its function and performance is verified.

  • PDF

Real-Time Implementation of MPEG-1 Audio decoder on ARM RISC (ARM RISC 상에서의 MPEG-1 Audio decoder의 실시간 구현)

  • 김선태
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.119-122
    • /
    • 2000
  • Recently, many complex DSP (Digital Signal Processing) algorithms have being realized on RISC CPU due to good compilation, low power consumption and large memory space. But, real-time implementation of multiple DSP algorithms on RISC requires the minimum and efficient memory usage and the lower occupancy of CPU. In this thesis, the original floating-point code of MPEG-1 audio decoder is converted to the fixed-point code and then optimized to the efficient assembly code in time-consuming function in accord with RISC feature. Finally, compared with floating-point and fixed-point, about 30 and 3 times speed enhancements are achieved respectively. And 3~4 times memory spaces are spared.

  • PDF