• Title/Summary/Keyword: Floating Roof Tank

Search Result 9, Processing Time 0.019 seconds

Flow Characteristics of Floating Roof Tank with Varying the Number of Operation and Angle (믹서의 가동 수 및 각도 변화에 따른 유동형 지붕 탱크의 유동특성)

  • Kim, Noh-Hyeong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.3
    • /
    • pp.20-25
    • /
    • 2015
  • In this study, there are 6 mixers that are installed in a 600,000 barrel tank. We identified internal flow characteristics of floating roof tank with varying the number of operation from 4 to 6 because mixer is a variable that influence flow characteristics of the tank. And while varying an angle from Right $60^{\circ}$, Right $30^{\circ}$, Left $30^{\circ}$ to Left $60^{\circ}$, we identified internal flow characteristics of the tank. As a result, maximum velocity of flow was 0.02m/s stationarily when we changed the number of operation from 4 to 6. Maximum velocity of flow by change of an angle was from 0.42m/s to 0.47m/s. Therefore, we identified that these factors don't have a great influence on internal flow characteristics of a tank by investigating results with varying the number of operation and an angle.

Analysis of Cause of Fire and Explosion in Internal Floating Roof Tank: Focusing on Fire and Explosion Accidents at the OO Oil Pipeline Corporation (내부 부상형 저장탱크(IFRT) 화재·폭발사고 원인 분석: OO송유관공사 저유소 화재·폭발사건을 중심으로)

  • Koo, Chae-Chil;Choi, Jae-Wook
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.86-93
    • /
    • 2020
  • This study aims to maintain the safety of an outdoor storage tank through the fundamental case analysis of explosion and fire accidents in the storage tank. We consider an accident caused by the explosion of fire inside the tank, as a result of the gradual spreading of the residual fire generated by wind lamps flying off a workplace in the storage tank yard. To determine the cause of the accident, atmospheric diffusion conditions were derived through CCTV image analysis, and the wind direction was analyzed using computational fluid dynamics. Additionally, the amount of oil vapor inside the tank when the floating roof was at the lowest position, and the behavior of the vapor inside the tank when the floating roof was at the highest position were investigated. If the cause of the explosion in the storage tank is identified and the level of the storage tank is maintained below the internal floating roof, dangerous liquid fills the storage tank, and the vapor in the space may stagnate on the internal floating roof. We intend to improve the operation procedure such that the level of the storage tank is not under the Pontoon support, as well as provide measures to prevent flames from entering the storage tank by installing a flame arrester in the open vent of the tank.

A Study on Safety of Atmospheric Storage Tank through Detailed Analysis of Accident Case (사고사례 정밀분석을 통한 상압저장탱크의 안전에 관한 연구)

  • Yim, Ji Pyo;Park, Su Youl
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.41-48
    • /
    • 2019
  • In October 2018, a large fire occurred after an explosion in an internal floating roof tank (IFRT) that stores gasoline by wind lantern in Goyang city, Gyeonggi-do. Although there was no casualty damage, the fire inside the tank lasted for 17 hours, and caused a great wave socially, and it was a chance to review the safety of the atmospheric storage tank. In this study, the necessity of installing a flame arrester at peripheral vents was examined through the calculation of the size of ventilation pipe and ventilation rate of internal floating roof tanks in terms of the function of the peripheral vent. Next, the necessity of the emergency shut-off valve linked with the high-level alarm to prevent the overflow of the atmospheric storage tank was confirmed by LOPA. Finally, safety measures to prevent overpressure, flame propagation and overflow which cause major accidents in atmospheric storage tank are suggested.

Vibration mode decomposition response analysis of large floating roof tank isolation considering swing effect

  • Sun, Jiangang;Cui, Lifu;Li, Xiang;Wang, Zhen;Liu, Weibing;Lv, Yuan
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.411-417
    • /
    • 2018
  • To solve the seismic response problem of a vertical floating roof tank with base isolation, the floating roof is assumed to experience homogeneous rigid circular plate vibration, where the wave height of the vibration is linearly distributed along the radius, starting from the theory of fluid velocity potential; the potential function of the liquid movement and the corresponding theoretical expression of the base shear, overturning the moment, are then established. According to the equivalent principle of the shear and moment, a simplified mechanical model of a base isolation tank with a swinging effect is established, along with a motion equation of a vertical storage tank isolation system that considers the swinging effect based on the energy principle. At the same time, taking a 150,000 m 3 large-scale storage tank as an example, a numerical analysis of the dampening effect was conducted using a vibration mode decomposition response spectrum method, and a comparative analysis with a simplified mechanical model with no swinging effect was applied.

Study of Fire and Explosion Prevention of an Internal Floating Roof Tank (내부 부상형저장탱크(IFRT) 화재·폭발 예방대책에 관한 연구)

  • Koo, Chae-Chil;Choi, Jae-Wook
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.45-49
    • /
    • 2019
  • This study examined the safety of storage tanks by analyzing the causes of fire on outdoor storage tanks. The outdoor storage tank is a fixed device for the long-term storage of dangerous goods and consists of a tank body and accessories; the accessories consist of a vent system, breather valve, flame arrestor, etc. The flame arrestor is a necessary safety measure to prevent fire explosions on outdoor storage tanks. On the other hand, it has been suggested that the installation of a flame arrester is necessary to compare the domestic and international standards. In addition, the flame arrester should be installed in the existing outdoor storage tanks, to complement foreign standards because there are not enough domestic standards to verify the performance of the flame arrester.

Wind loads and wind-resistant behaviour of large cylindrical tanks in square-arrangement group. Part 1: Wind tunnel test

  • Liu, Qing;Zhao, Yang;Cai, Shuqi;Dong, Shilin
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.483-493
    • /
    • 2020
  • Large cylindrical floating-roof tanks, constructed as oil containers, are usually distributed regularly in open area and easily exposed to severe wind loads. However, wind pressures around these grouped squat tanks appear to have not been clearly given in design codes or thoroughly studied in existing researches. This paper conducts a detailed investigation on wind loads on the external wall of a four-tank group in square arrangement. To achieve that, wind tunnel tests are carried out on both empty and full tank groups, considering various wind angles and spacing. Results show that 3 regions in elevation can be identified on the tank shell according to the circumferential wind pressure distribution. The upper 2 regions cover a relatively small portion of the shell where excessive negative pressures are spotted, setting an alarm to the design of the top angle and stiffening rings. By comparing results on grouped tanks to those on an isolated tank, grouping effects concerning wind angle, tank position in group and spacing are discussed. Deviations on pressure distributions that will compromise structural safety are outlined, including the increase of negative pressures, the shift of maximum pressure locations as well as the change of positive pressure range. And, several potentially unfavourable wind pressure distributions are selected for further analyses.

Seismic response analysis of an oil storage tank using Lagrangian fluid elements

  • Nagashima, Toshio;Tsukuda, Takenari
    • Coupled systems mechanics
    • /
    • v.2 no.4
    • /
    • pp.389-410
    • /
    • 2013
  • Three-dimensional Lagrangian fluid finite element is applied to seismic response analysis of an oil storage tank with a floating roof. The fluid element utilized in the present analysis is formulated based on the displacement finite element method considering only volumetric elasticity and its element stiffness matrix is derived by using one-point integration method in order to avoid volumetric locking. The method usually adds a rotational penalty stiffness to satisfy the irrotational condition for fluid motion and modifies element mass matrices through the projected mass method to suppress spurious hourglass-mode appeared in compensation for one-point integration. In the fluid element utilized in the present paper, a small hourglass stiffness is employed. The fluid and structure domains for the objective oil storage tank are modeled by eight-node solid elements and four-node shell elements, respectively, and the transient response of the floating roof structure or the free surface are evaluated by implicit direct time integration method. The results of seismic response analyses are compared with those by other method and the validation of the present analysis using three-dimensional Lagrangian fluid finite elements is shown.

Wind loads and wind-resistant behaviour of large cylindrical tanks in square-arrangement group. Part 2: CFD simulation and finite element analysis

  • Liu, Qing;Zhao, Yang;Cai, Shuqi;Dong, Shilin
    • Wind and Structures
    • /
    • v.31 no.6
    • /
    • pp.495-508
    • /
    • 2020
  • To investigate the structural behaviour of grouped tanks under wind loads, 2 problems need to be figured out, wind pressures on tank shells and critical loads of the shell under these pressure distribution patterns. Following the wind tunnel tests described in the companion paper, this paper firstly seeks to obtain wind loads on the external wall in a squarely-arranged cylindrical tank group by numerical simulation, considering various layouts. The outcomes demonstrate that the numerical method can provide similar results on wind pressures and better insights on grouping effects through extracted streamlines. Then, geometrically nonlinear analyses are performed using several selected potentially unfavourable wind pressure distributions. It is found that the critical load is controlled by limit point buckling when the tank is empty while excessive deformations when the tank is full. In particular, significant reductions of wind resistance are found on grouped full tanks compared to the isolated tank, considering both serviceability and ultimate limit state, which should receive special attention if the tank is expected to resist severe wind loads with the increase of liquid level.