• 제목/요약/키워드: Floating Motion

검색결과 433건 처리시간 0.024초

경사 입사파중 계류된 부유식 방파제의 운동응답과 투과율 해석 (Analysis on Motion Responses and Transmission Coefficients of a Moored Floating Breakwater in Oblique Incident Waves)

  • 조일형;표상우
    • 한국해양공학회지
    • /
    • 제23권3호
    • /
    • pp.6-13
    • /
    • 2009
  • Based on the boundary element method, the motion responses and transmission coefficients of a moored floating breakwater were investigated in oblique waves. To satisfy the outgoing radiation condition in the far field, the fluid domain was divided into inner and outer regions. The complete solution could be obtained by applying the matching conditions between the eigenfunction-based outer solution and BEM-based inner solution. Using the developed predictive tools, the wave exciting forces, added mass, damping coefficients, motion responses, and transmission coefficients were assessed for various combinations of breakwater configuration, wave heading, mooring cables properties, and wave characteristics. It was found that the transmission coefficient for a moored floating breakwater was closely dependent on the motion responses, which were greatly amplified at the resonant frequencies.

비접촉식 실시간 6자유도 운동계측시스템 (Non-contact Realtime 6D-Motion Tracking System)

  • 조용범;편용범;도덕희;조효제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.479-484
    • /
    • 2003
  • A non-contact 6D motion tracking system is proposed. The system consists of two color cameras, a color image grabber and a host computer, Motions of a floating vessel was measured by the constructed system. The instantaneous forces of the floating vessel are analyzed. The floating vessel was put on the water in a small water container in free conditions. The measured forces are reconstructed by the measurement results. The system can be used to non-contact measurements for 6D dynamic analysis of floating vessels.

  • PDF

Numerical Analysis of Floating-Body Motions in Varying Bathymetry

  • Kim, Taeyoung;Kim, Yonghawn
    • International Journal of Ocean System Engineering
    • /
    • 제4권1호
    • /
    • pp.43-48
    • /
    • 2014
  • Varying bathymetry significantly affects on the wave propagation and motion response of floating body. Coupled-mode wave theory is adopted to describe the incident wave properly in varying region. The results of waves and motion response are compared to those from numerical wave tank, and the agreement is favorable. The sloped bottom is modeled and its effect on the floating body is discussed.

말뚝계류된 부방파제의 공간파랑제어 및 동적거동에 관한 연구 (Three-Dimensional Wave Control and Dynamic Response of Floating Breakwater Moored by Piers)

  • 김도삼;윤희면
    • 한국해안해양공학회지
    • /
    • 제14권3호
    • /
    • pp.183-191
    • /
    • 2002
  • 해수교환이 우수하고, 조차에 따라 상·하로 자유롭게 운동하며, 연약지반과 대수심역에도 설치될 수 있다는 것을 일반적인 부방파제의 주요한 특징으로 들 수 있다. 본 연구는 말뚝계류된 부방파제에 의한 3차원파랑제어와 동적인 거동을 경계적분법과 고유함수전개법을 병용하는 수치해석법으로부터 논의한다. 여기서, 말뚝계류시스템은 연직운동만이 허용되고 다른 운동성분들은 모두 구속되며, 체인계류시스템보다도 파랑에너지의 흡수가 많은 것으로 알려져 있다. 본 연구에서는 말뚝계류에 있어서 말뚝과 본체인 폰툰과의 사이에 작용하는 마찰력과 같은 저항력은 고려되지 않는다. 수치해석결과에 따르면 부방파제의 홀수와 폭의 변화는 파랑제어에 큰 영향을 미치고, 입사파의 주기가 길면 부방파제를 통한 전달파가 크다는 것을 알 수 있다. 그리고, 부방파제의 연직운동은 단주기파에서 크게 나타난다.

부유체-몰수체 상호작용을 이용한 부유체 상하운동 저감에 대한 실험적 연구 (Experimental Study on the Reduction of Vertical Motion of Floating Body Using Floating-Submerged Bodies Interaction)

  • 신민재;구원철;김성재;허상환;민은홍
    • 대한조선학회논문집
    • /
    • 제54권6호
    • /
    • pp.485-491
    • /
    • 2017
  • An experimental study on the reduction of vertical motion of floating body using floating-submerged body interaction was performed in a two-dimensional wave channel. The system consisting of a floating and submerged body that only move vertically was modeled. This experiment was designed based on the results of theoretical analysis of two-body interaction. The results showed a tendency to significant reduction of heave RAO of floating body due to submerged body. Various connection line stiffness and dimension of the submerged body were applied to investigate the effect of two-body interaction on the vertical motion of the bodies, Heave RAOs of the floating-submerged body were compared with those of single body. From the comparison study, we obtained an optimum condition of connection line and dimension of submerged body for maximum heave reduction at the resonant period of single body.

말뚝계류식 부유체의 파랑제어 기능과 마찰감에 관한 연구 (Wave control fuction and friction damping of a pile-supported floating body)

  • 김헌태
    • 한국해양공학회지
    • /
    • 제11권1호
    • /
    • pp.65-73
    • /
    • 1997
  • 본 연구는 부유식 파랑제어구조물의 계류방식을 말뚝계류식으로 하여 종래의 부유식 파랑제어구조물의 파랑제어기능을 보완하고, 친수성 구조물로 이용할 수 있는 다용도 구조물의 개발을 목표로 하고 있다. 본 연구에서는 부유체의 계류장치에 초기반력을 작용시킴으로써 발생하는 파랑제어 효과의 개선과 부유체의 동요제어 효과를 수치계산법을 통하여 논의하였다. 이 때 계류부에서 발생하는 비선형 마찰력을 선형모델화하는 이론을 전개한 다음 수치계산 및 실험값을 통하여 본 수치모델의 적용성에 관하여 논의한 결과 양호한 일치성을 보였다. 또한, 파랑제어 효과 및 부유체의 동요저감 효과를 동시에 만족할 수 있는 초기반력에 관하여 논의하였다.

  • PDF

경사 입사파중 부분 반사 안벽과 부유체의 상호작용 (Interaction of a Floating Body with a Partially Reflective Sidewall in Oblique Waves)

  • 조일형
    • 한국해안·해양공학회논문집
    • /
    • 제21권5호
    • /
    • pp.410-418
    • /
    • 2009
  • 선형포텐셜이론을 가정하여 부분 반사 안벽 앞에 계류된 부유체의 동유체력과 운동응답을 해석할 수 있는 경계요소법을 개발 적용하였다. 동유체력인 부가질량과 감쇠계수는 부유체의 잠긴깊이와 안벽에서의 반사율 그리고 부유체와 안벽사이의 떨어진 거리에 밀접한 관련이 있다. 특히 안벽에서의 반사율은 안벽과 부유체사이의 제한유체영역내에서 발생하는 공진현상에 의하여 증폭된 운동변위의 피크값을 줄이는 등 운동응답에 중요한 영향을 미친다. 개발된 수치해석법은 부유체의 형상, 입사각, 안벽의 속성, 입사파의 특성 등의 변화에 따른 부유체의 운동성능을 평가하는데 이용될 것이며, 또한 항만내 계류된 선박의 운동특성을 고려한 항만설계의 기초자료로 활용 될 것이다.

A Flow Analysis of Small Craft by Using CFD

  • Park, Ji-Yong;Jeong, Jin-Hee;Hwang, Tea-Wook;Lee, Sol-Ah;Kim, Kyung-Sung
    • Journal of Multimedia Information System
    • /
    • 제7권4호
    • /
    • pp.269-276
    • /
    • 2020
  • The small craft including jet-board for leisure are commonly smaller than the general commercial vessels. For the floating vessel, the motion analysis is significantly important component to design the shape. It is, however, hardly predicting its behavior by using conventional boundary element method due to violating small amplitude assumption for potential theory. The computational fluid dynamics method can afford to simulate such small craft, but its grid system was not able to calculate motion, because movable body disturbs the grid system by confliction. The dynamics fluid body interaction model with over-set mesh system can be dealt with movable floating body under irregular ocean wave. In this study, several cases were considered to reveal that DFBI is essential method to predict floating body motion. The single phase simulate was conducted to establish the shape perfection, and then the validated vessel was simulated with ocean waves weather DFBI option on or off. Through the comparison, the results between the cases of DFBI on and off shows significantly difference. It was claimed that the DFBI was necessary not only to calculation body motion, but also to predict accurate drag and lift force on the floating body for small size craft.

파랑에 의한 항만 내 부유체의 운동 (Wave-Induced Motions of a Floating Body in a Harbour)

  • 이호영;곽영기;박종환
    • 한국해양공학회지
    • /
    • 제20권2호
    • /
    • pp.36-40
    • /
    • 2006
  • As large waves enter a harbor, during their propagation, the motions a floating body are large and if may even be damaged by waves. This phenomenon may be caused by harbor resonance, resulting from large motion at low wave frequency, which is close to the natural frequency of a vessel. In order to calculate the motion of a floating body in a harbor, it is necessary to use the wave forces containing the body-harbor interference. The simulation program to predict the motions of a floating body by waves in a harbor is developed, and this program is based on the method of velocity potential contiuation method proposed by Ijima and Yoshida The calculated results are shown by the variation of wave frequency, wave angle, and the position of a floating body.

파랑 중 해상 크레인의 하강 작업 수치 시뮬레이션 (Lowering Simulation using Floating Crane in Waves)

  • 남보우;홍사영;김병완;이동엽
    • 한국해양공학회지
    • /
    • 제26권1호
    • /
    • pp.17-26
    • /
    • 2012
  • A coupled analysis of a floating crane barge with a crane wire and hanging structure is carried out in thetime domain. The motion analysis of the crane barge is based on the floating multi-body dynamics, and thecrane wire is modeled as a simple spring tension. The hanging structure is assumed to be a rigid body with 3 degree-of-freedom translational motion. In this study, numerical simulations were conducted at three different stages. First, the developed code was validated by comparing the time-domain motion response of a crane barge with the frequency-domain results. Then, a coupled analysis of a crane barge and simple structure hanging by the crane wire was performed using the present scheme. The motion response and wire tension from the present calculations are compared with the results of OrcaFlex. The agreement between the two sets of results isfairly good. Last, lowering simulations in regular and irregular waves were conducted considering buoyancy changes in the hanging structure. The effects of the wave conditions, structure's weight, wire length, and lowering speed on the wire tension are considered.