• Title/Summary/Keyword: Floating Body

Search Result 341, Processing Time 0.028 seconds

CFD Analysis of Two-Dimensional Floating Body with Moon Pool under Forced Heave Motion (문풀을 가지는 2차원 부유체의 강제 상하동요에 대한 CFD 해석)

  • Heo, Jae-Kyung;Park, Jong-Chun;Kim, Moo-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.36-46
    • /
    • 2011
  • A two-dimensional floating body with a moon pool under forced heave motion, including a piston mode, is numerically simulated. A dynamic CFD simulation is carried out to thoroughly investigate the flow field around a two-dimensional moon pool over various heaving frequencies. The numerical results are compared with experimental results and a linear potential program by Faltinsen et al. (2007). The effects of vortex shedding and viscosity are investigated by changing the corner shapes of the floating body and solving the Euler equation, respectively. The flow fields, including the velocity, vorticity, and pressure fields, are discussed to understand and determine the mechanisms of wave elevation, damping, and sway force.

Hydrodynamic Interaction Characteristics between Multiple Floating Bodies of Semisubmersible Type in Waves (반잠수식 부체군의 상호간섭특성)

  • Goo, Ja-Sam;Hong, Bong-Ki
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.93-103
    • /
    • 1992
  • The hydrodynamic interaction characteristics between multiple floating bodies of semisubmersible type are examined for presenting the basic data for the design of huge offshore structures supported by a large number of the floating bodies in waves. The numerical approach is based on combination of a three-dimensional source distribution method and interaction theory which is exact within the context of linear potential theory. The method is applicable to an arbitrary number of three-dimensional bodies having any individual body geometries and geometrical arrangement with the restriction that the circumscribed, bottom-mounted, imaginary vertical cylinder for each body does not contain any part of the other body. The validity of this procedure was verified by comparing with numerical results obtained in the literature.

  • PDF

A Study on the Characteristics of Vertical Motions due to Changes of Submerged Shape in the Multi-Purpose Small Floating Body (다목적 소형 부유시설의 몰수부 형상변화에 따른 파랑중 수직운동 특성에 관한 연구)

  • OH, Yu-Na;KIM, Sang-Won;LEE, Gyoung-Woo;HAN, Seung-Jae;KIM, In-chul
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.4
    • /
    • pp.1024-1030
    • /
    • 2016
  • This study gives the vertical motion analysis due to changes in Submerged shape of Multi-Purpose Small Floating Body in irregular waves using the commercial code(MAXSURF v.20) based on the Panel method. To verify the commercial code prior to the analysis, we guarantees the reliability of this paper's results using the commercial code by comparing with the results of experimental results on Catamaran. The anlysis conditions are ITTC wave spectrum, each encounter angle. Finally, we analyze the result of ship's response spectra for vertical motions.

A study on the Motions of a ship with Liquid Cargo Tanks (화물창의 유체유동을 고려한 선체운동에 관한 연구)

  • 박명규;김순갑;김동준
    • Journal of the Korean Institute of Navigation
    • /
    • v.10 no.2
    • /
    • pp.139-155
    • /
    • 1986
  • In this paper the dynamic effects due to the free water motions in tanks upon the lateral motion of a floating body in regular waves are calculated, in order to obtain the relationship between a motion of a floating body and that of the free water in tanks. Under the assumption that the fluid is ideal and motion amplitudes are small, velocity potential of the fluid in tanks is calculated by the source distribution method and the hydrodynamic forces and moments are calculated by the integration of fluid pressures over the tank surface. Hydrodynamic effects of the fluid on the floating body are expressed in terms of added mass and coupling coefficient obtained from the integration. Computations are carried out for ship with seven wide center tanks and comparisons between the liquid cargo loading case and the rigid cargo loading case are shown.

  • PDF

Current effects on global motions of a floating platform in waves

  • Shen, Meng;Liu, Yuming
    • Ocean Systems Engineering
    • /
    • v.7 no.2
    • /
    • pp.121-141
    • /
    • 2017
  • The purpose of this paper is to understand and model the slow current (~2 m/s) effects on the global response of a floating offshore platform in waves. A time-domain numerical simulation of full wave-current-body interaction by a quadratic boundary element method (QBEM) is applied to compute the hydrodynamic loads and motions of a floating body under the combined influence of waves and current. The study is performed in the context of linearized potential flow theory that is sufficient in understanding the leading-order current effect on the body motion. The numerical simulations are validated by quantitative comparisons of the hydrodynamic coefficients with the WAMIT prediction for a truncated vertical circular cylinder in the absence of current. It is found from the simulation results that the presence of current leads to a loss of symmetry in flow dynamics for a tension-leg platform (TLP) with symmetric geometry, resulting in the coupling of the heave motion with the surge and pitch motions. Moreover, the presence of current largely affects the wave excitation force and moment as well as the motion of the platform while it has a negligible influence on the added mass and damping coefficients. It is also found that the current effect is strongly correlated with the wavelength but not frequency of the wave field. The global motion of a floating body in the presence of a slow current at relatively small encounter wave frequencies can be satisfactorily approximated by the response of the body in the absence of current at the intrinsic frequency corresponding to the same wavelength as in the presence of current. This finding has a significant implication in the model test of global motions of offshore structures in ocean waves and currents.

Two-Dimensional Particle Simulation for Behaviors of Floating Body near Quaywall during Tsunami (지진해일 중 해안안벽 주변의 부유체 거동에 관한 2차원 입자법 시뮬레이션)

  • Park, Ji-In;Park, Jong-Chun;Hwang, Sung-Chul;Heo, Jae-Kyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.12-19
    • /
    • 2014
  • Tsunamis are ocean waves generated by movements of the Earth's crust. Several geophysical events can lead to this kind of catastrophe: earthquakes, landslides, volcanic eruptions, and other mechanisms such as underwater explosions. Most of the damage associated with tsunamis are related to their run-up onto the shoreline. Therefore, effectively predicting the run-up process is an important aspect of any seismic sea wave mitigation effort. In this paper, a numerical simulation of the behaviors of a floating body near a quaywall during a tsunami is conducted by using a particle method. First, a solitary wave traveling over shallow water with a slope is numerically simulated, and the results are compared with experiments and other numerical results. Then, the behaviors of floating bodies with different drafts are investigated numerically.

Dynamic Analysis of Multiple-Body Floating Platforms Coupled with Mooring Lines and Risers

  • Kim Young-Bok;Kim Moo-Hyun
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.1
    • /
    • pp.11-26
    • /
    • 2005
  • In this study, the program to investigate the multiple body interaction effects between a floating platform and a shuttle tanker considering the coupled effect of hull (FPSO) with mooring lines and risers was developed. The coupled analysis program, which is called WINPOST-MULT using the hydrodynamic analysis results by WAMIT, was made. For the verification of WINPOST-MULT by means of numerical experiments, two multiple-body models of an FPSO-FPSO and an FPSO-shuttle tanker system are adopted. With the FPSO-FPSO model and a two-mass-spring system to idealize two identical bodies for the 100-year storm wave condition in GOM, the numerical simulations were performed to investigate the interaction effects between two identical bodies. For the more reality, the coupled analysis for the FPSO-shuttle tanker model in the tandem arrangement was carried out in the consideration of the environmental condition of the West Africa Sea as a rather mild condition. Through the case studies with interaction effect and without interaction effect by the iteration method and the combined method, it is verified that the program is a very useful tool for the analysis of the interaction problem of multiple-body system and the coupled problem of the hull/mooring/riser.

Stability Enhancement of Polysilicon Thin-Film Transistors with A Source-tied-to-body

  • Choi, B.D.;Choi, D.C.;Jung, J.Y.;Park, H.H.;Chung, H.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.293-293
    • /
    • 2005
  • The differences between floating and grounded body effects in polycrystalline silicon thin-film transistors (polysilicon TFTs) are investigated by making a body contact. The floating body effects such as kink effect, subthreshold slope change, and body current characteristics are explained and modeled by impact ionization, which causes source body turn on, and activates the parasitic bipolar junction transistors (BJTs). These effects become crucial for channel lengths of 4㎛ or shorter. Our data show that making a body contact reduces kink effects significantly and identifies impact ionization mechanism in polysilicon TFTs.

  • PDF

Hydrodynamic analysis of a floating body with an open chamber using a 2D fully nonlinear numerical wave tank

  • Uzair, Ahmed Syed;Koo, Weon-Cheol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.281-290
    • /
    • 2012
  • Hydrodynamic analysis of a surface-piercing body with an open chamber was performed with incident regular waves and forced-heaving body motions. The floating body was simulated in the time domain using a 2D fully nonlinear numerical wave tank (NWT) technique based on potential theory. This paper focuses on the hydrodynamic behavior of the free surfaces inside the chamber for various input conditions, including a two-input system: both incident wave profiles and forced body velocities were implemented in order to calculate the maximum surface elevations for the respective inputs and evaluate their interactions. An appropriate equivalent linear or quadratic viscous damping coefficient, which was selected from experimental data, was employed on the free surface boundary inside the chamber to account for the viscous energy loss on the system. Then a comprehensive parametric study was performed to investigate the nonlinear behavior of the wave-body interaction.

A Novel Body-tied Silicon-On-Insulator(SOI) n-channel Metal-Oxide-Semiconductor Field-Effect Transistor with Grounded Body Electrode

  • Kang, Won-Gu;Lyu, Jong-Son;Yoo, Hyung-Joun
    • ETRI Journal
    • /
    • v.17 no.4
    • /
    • pp.1-12
    • /
    • 1996
  • A novel body-tied silicon-on-insulator(SOI) n-channel metal-oxide-semiconductor field-effect transistor with grounded body electrode named GBSOI nMOSFET has been developed by wafer bonding and etch-back technology. It has no floating body effect such as kink phenomena on the drain current curves, single-transistor latch and drain current overshoot inherent in a normal SOI device with floating body. We have characterized the interface trap density, kink phenomena on the drain current ($I_{DS}-V_{DS}$) curves, substrate resistance effect on the $I_{DS}-V_{DS}$ curves, subthreshold current characteristics and single transistor latch of these transistors. We have confirmed that the GBSOI structure is suitable for high-speed and low-voltage VLSI circuits.

  • PDF