• Title/Summary/Keyword: Flight control

Search Result 1,411, Processing Time 0.026 seconds

Synthesis of a flight control system via nonlinear model matching theory

  • Uchikado, Shigeru;Kobayashi, Nobuaki;Osa, Yasuhiro;Kanai, Kimio;Nakamizo, Takayoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.659-664
    • /
    • 1994
  • In this paper we deal with a synthesis of flight control system via nonlinear model matching theory. First, the longitudinal and lateral-directional equations of aircraft motion an CCV mode are considered except the assumption "variations on steady straight flight due to disturbances are very small". Next, a design method of the dynamic model matching control system based on Hirschorn's Algorithm is proposed to the above nonlinear system. Finally, the proposed control system is applied to the small sized, high speed aircraft, T-2 on CCV mode and numerical simulations are shown to justify the proposed scheme.ed scheme.

  • PDF

Flight Control Experiment of High-Speed Aero-Levitation Electric Vehicle Scale-Model in Wind-Tunnel (공기부상 초고속 운행체 축소모델의 풍동내 비행제어 실험)

  • Park, Young-Geun;Choi, Seung-Kie;Cho, Jin-Soo;Song, Yong-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.246-253
    • /
    • 2005
  • An experimenal study on flight control of high-speed AEV(Aero-levitation Electric Vehicle) scale model in wind-tunnel is conducted. The AEV is to fly at very low altitude in predesigned track so that it is always under the wing-in-ground effect. The experiment is intended to fly the scale model to follow the predesigned altitude schedule while holding its attitude (pitch, roll, and yaw). Especially, the altitude changes for climb, cruise, and descent with constant pitch angle are most important maneuvers. The experiment shows that the required mission flights can be performed with appropriate sensors, processors, and actuators.

Hovering Flight Control for a Model Helicopter using the Minimal-Order LQG/LTR Technique (Minimal Order LQG/LTR 기법에 의한 모형헬리콥터의 정지비행 자세제어)

  • Yang, J.S.;Han, K.H.;Lee, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.457-459
    • /
    • 1998
  • This paper presents a 3-DOF hovering flight controller for a model helicopter using the minimal order LQG/LTR technique. A model helicopter is an unstable multi-input multi-output nonlinear system strongly exposed to disturbances, so a robust multi-variable control theory should be applied to control it. The minimal order LQG/LTR technique which uses a reduced-order observer in the LTR procedure is used to design the controller. Performances for the 3-DOF hovering flight controller are evaluated through computer simulations.

  • PDF

Predictive Algorithm of Self-Control System using Load Control Model applied to Automobile Dynamic (하중모델을 이용한 자동차 운동 분석과 자율 예측 시스템 알고리즘)

  • Wang, Hyun-Min;Woo, Kwang-Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.4
    • /
    • pp.61-68
    • /
    • 2010
  • Appling high technology of aerospace to automobile, so it is able to progress safety which is a goal of future automobile and to approach development of self-control automobile. This is realized dynamic model of airplane at DFCS(Digital Flight Control System). The DFCS calculates control values for self-control flight. If this high technology applies to automobile, then it is able to be maneuvered automobile like UAV's self-control flight. In this paper is reanalyzed automobile dynamic applied load control model used high-tech of airplane. It analyzes riding comfortable according to movement of automobile using the load control model, presents method of solution for improvement riding comfortable and presents example of self-control system used the load control model for self-control driving.

Development of UAV Flight Control Software using Model-Based Development(MBD) Technology (모델기반 개발기술을 적용한 무인항공기 비행제어 소프트웨어 개발)

  • Moon, Jung-Ho;Shin, Sung-Sik;Choi, Seung-Kie;Cho, Shin-Je;Rho, Eun-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1217-1222
    • /
    • 2010
  • This paper describes the Model-Based Development(MBD) process behind the flight control software of a close-range unmanned aerial vehicle(KUS-9). An integrated development environment was created using a commercial tool(MATLAB $Simulink^{(R)}$), which was utilized to design models for linear/nonlinear simulation, flight control law, operational logic and HILS(Hardware In the Loop Simulation) system. Software requirements were validated through flight simulations and peer reviews during the design process, whereas the models were verified through the application of a DO-178B verification tool. The integrity of automatically generated C code was verified by using a separate S/W testing tool. The finished software product was embedded on two different types of hardware and real-time operating system(uC/OS-II, VxWorks) to perform HILS and flight tests. The key findings of this study are that MBD Technology enables the development of a reusable and an extensible software product and auto-code generation technology allows the production of a highly reliable flight control software under a compressed time schedule.

A study on the helicopter dynamic stability derivatives in forward flight (전진 비행시 헬리콥터의 동적 미계수에 관한 연구)

  • 홍천식;황명신
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.153-158
    • /
    • 1992
  • The purpose of this paper is to calculate the dynamic derivatives of single rotor Helicopter in forward flight. From trim condition, the equation of motion is derived, and we can calculate the dynamic dervatives. The results were compared with flight test data. The phase angle and stick displacement are obtained and compared at the trim condition.

  • PDF

Synthesis of Nonlinear Model Matching Flight Control System for Tilt Rotor Aircraft

  • Asada, Yasuhiro;Osa, Yasuhiro;Uchikado, Shigeru;Tanaka, Kanya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.979-984
    • /
    • 2005
  • In this study, we suggest a tilt rotor aircraft and attempt to apply a nonlinear model matching control method for its maneuver. The proposed method is very simple and useful to construct the control law for the complicated nonlinear system such as aircraft motion.

  • PDF

Comparative review of the guidelines for the infection prevention and control in the cabin during flight - Focused on the guidelines of U.S., Canada, E.U., Australia and China (운항 중 항공기 내 감염병 확산 방지를 위한 해외 주요 지침의 대응 요소 분석 연구 - 미국, 캐나다, 유럽연합, 호주, 중국의 객실 운영지침을 중심으로)

  • Yoon, Hyung Jin;Wang, Soomyung;Choi, Seunglee
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.26 no.3
    • /
    • pp.7-16
    • /
    • 2020
  • Purpose: As communicable disease, COVID-19, pandemic strikes over the world, it is critically bewared that air travel possibly be a major pass way to deliver the infectious disease virus. Especially the airplane could be an unique environment to cultivate the virus spreaders. In order to keep the continuous safe airway as well as the industry, related international associations and organizations have been published the guidelines for the prevention and control the infectious disease through the all aspects of aviation. By reviewing the guidelines, focusing on the in-flight infection prevention and control, this study would not only inform a summary of the international guidelines but also provide an essential and general consideration for related research or guideline study. Methods: Guidelines of 5 major countries are reviewed, which has been seriously influenced by COVID-19 : U.S., Canada, E.U., Australia and China. The items of the guidelines are re-categorized as its similarity and structure by applicable cases. Results: The result of this study shows that each guideline seems to share a major structure and issue such as identifying sick traveler, sick passenger care, and cleaning even though that of China has a different since it used to consider the flight conditions based on 3 levels of infection risk. For sick passenger care, the guidelines includes crew safety, service level, sick passenger isolation, and cleaning. Implications: A published guideline as a public manual could be to prevent and control the in-flight infection efficiently and promptly. It also could provide a confidence of knowledge and educate for all users to prepare the in-flight emergency as well.

Analysis of Flight Test Result for Control Performance of Smart UAV (스마트무인기의 비행제어 성능관련 비행시험 결과분석)

  • Kang, Young-Shin;Park, Bun-Jin;Cho, Am;Yoo, Chang-Sun;Koo, Sam-Ok
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.22-31
    • /
    • 2013
  • Flight tests on flight control performance of helicopter, conversion and airplane mode for the Smart UAV were completed. Automatic take-off and landing, automatic return home as well as automatic approach to hover were performed in helicopter mode. Climb/descent, left/right turn using speed and altitude hold mode were performed in each $10^{\circ}$ tilt angle in conversion mode. The rotor speed in airplane mode was reduced to 82% from 98% RPM in order to increase rotor efficiency with reducing Mach number at tip of rotors. It reached to the designed maximum speed, $V_{TAS}$=440 km/h at 3 km altitude. This paper presents the flight test result on full envelopment of Smart UAV. Detailed test plan and test data on control performance were also presented to prove that all data meets the flying qualities requirement.

Design and testing of the KC-100 Spin Recovery Parachute System (SRPS)

  • Lee, Dong-Hun;Nho, Byung-Chan;Kang, Myung-Kag;Kang, Kyung-Woo;Lee, Ju-Ha;Kim, Su-Min;Kwon, Young-Suk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.117-125
    • /
    • 2012
  • This paper presented the design of SRPS, ground function test, and the deployment test on a high speed taxi of KC-100 airplane. KAI has developed a spin recovery system in collaboration with Airborne Systems for KC-100 general aviation airplane. Spin mode analysis, rotary balance and forced oscillation tests were performed to obtain the rotational, dynamic derivatives in the preliminary design phase. Prior to the detailed design process of SRPS, approximations for initial estimation of design parameters- fineness ratio, parachute porosity, parachute canopy filling time, and deployment method- were considered. They were done based on the analytical disciplines such as aerodynamics, structures, and stability & control. SRPS consists of parachute, tractor rocket assembly for deployment, attach release mechanism (ARM) and cockpit control system. Before the installation of SRPS in KC-100 airplane, all the control functions of this system were demonstrated by using SBTB(System Breakout Test Box) in the laboratory. SBTB was used to confirm if it can detect faults, and simulate the firing of pyrotechnic devices that control the deployment and jettison of SRPS. Once confirmed normal operation of SRPS, deployment and jettison of parachute on the high speed taxiing were performed.