• Title/Summary/Keyword: Flight Trajectory

Search Result 237, Processing Time 0.026 seconds

Experimental Study on Estimation of Flight Trajectory Using Ground Reflection and Comparison of Spectrogram and Cepstrogram Methods (지면 반사효과를 이용한 비행 궤적 추정에 대한 실험적 연구와 스펙트로그램 및 캡스트로그램 방법 비교)

  • Jung, Ookjin;Go, Yeong-Ju;Lee, Jaehyung;Choi, Jong-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.115-124
    • /
    • 2015
  • A methodology is proposed to estimate a trajectory of a flying target and its velocity using the time and frequency analysis of the acoustic signal. The measurement of sound emitted from a flying acoustic source with a microphone above a ground shall receive both direct and ground-reflected sound waves. For certain frequency contents, the destructive interference happens in received signal waveform reflected path lengths are in multiple integers of direct path length. This phenomenon is referred to as the acoustical mirror effect and it can be observed in a spectrogram plot. The spectrogram of acoustic measurement for a flying vehicle measurement shows several orders of destructive interference curves. The first or second order of curve is used to find the best approximate path by using nonlinear least-square method. Simulated acoustic signal is generated for the condition of known geometric of a sensor and a source in flight. The estimation based on cepstrogram analysis provides more accurate estimate than spectrogram.

Development of a University-Based Simplified H2O2/PE Hybrid Sounding Rocket at KAIST

  • Huh, Jeongmoo;Ahn, Byeonguk;Kim, Youngil;Song, Hyunki;Yoon, Hosung;Kwon, Sejin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.512-521
    • /
    • 2017
  • This paper reports development process of a university-based sounding rocket using simplified hybrid rocket propulsion system for low-altitude flight application. A hybrid propulsion system was tried to be designed with as few components as possible for more economical, simpler and safer propulsion system, which is essential for the small scale sounding rocket operation as a CanSat carrier. Using blow-down feeding system and catalytic ignition as combustion starter, 250 N class hybrid rocket system was composed of three components: a composite tank, valves, and a thruster. With a composite tank filled with both hydrogen peroxide($H_2O_2$) as an oxidizer and nitrogen gas($N_2$) as a pressurant, the feeding pressure was operated in blowdown mode during thruster operation. The $MnO_2/Al_2O_3$ catalyst was fabricated for propellant decomposition, and ground test of propulsion system showed the almost theoretical temperature of decomposed $H_2O_2$ at the catalyst reactor, indicating sufficient catalyst efficiency for propellant decomposition. Auto-ignition of the high density polyethylene(HDPE) fuel grain successfully occurred by the decomposed $H_2O_2$ product without additional installation of any ignition devices. Performance test result was well matched with numerical internal ballistics conducted prior to the experimental propulsion system ground test. A sounding rocket using the developed hybrid rocket was designed, fabricated, flight simulated and launch tested. Six degree-of-freedom trajectory estimation code was developed and the comparison result between expected and experimental trajectory validated the accuracy of the developed trajectory estimation code. The fabricated sounding rocket was successfully launched showing the effectiveness of the simplified hybrid rocket propulsion system.

The Analysis of Flight Data Processing System (비행자료 처리시스템 분석)

  • Kim, Do-woo;Oh, Seung Hee;Lee, Deok Gyu;Lee, Seoung Hyeon;Han, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.785-788
    • /
    • 2009
  • The flight data processing system is the system which processes and manages all flight related data for the aircraft control and performs the trajectory modeling. It takes charge of the role of performing the core function of the integrated information processing system for the flight control. For the safe aircraft's flight, the information transfer and exchange among air traffic control units are the essential element through the flight data processing. Therefore, for the development of the flight data processing system we are going to analyze its function and look into the necessary consideration in a design in this paper.

  • PDF

The Characteristics of Open-loop Trajectory and Time-to-go Estimation for Impact Angle Control Optimal Guidance through Inverse Optimal Problem (역최적 문제를 통한 충돌각 제어 최적유도법칙의 개루프 비행궤적 특성 및 Time-to-go 예측)

  • Lee, Yong-In;Lee, Jin-Ik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.5-12
    • /
    • 2008
  • This paper presents the features of an impact angle constrained open-loop optimal trajectory which is given by a function of initial conditions and optimal guidance gains. Using missile motion described by linearized kinematic equations and a proper form of performance index, an inverse optimal problem is suggested to investigate the gains related to the performance index. The flight trajectory and time-to-go can be shaped in terms of the optimal guidance gains. The results are evaluated by 3-DOF simulation.

Trajectory Optimization and Optimal Explicit Guidance Algorithm Design for a Satellite Launch Vehicle (위성발사체의 궤적최적화와 최적 유도 알고리듬 설계)

  • Roh, Woong-Rae;Kim, Yodan;Song, Taek-Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.173-182
    • /
    • 2001
  • Ascent trajectory optimization and optimal explicit guidance problems for a satellite launch vehicle in a 2-dimensional pitch plane are studied. The trajectory optimization problem with boundary conditions is formulated as a nonlinear programming problem by parameterizing the pitch attitude control variable, and is solved by using the SQP algorithm. The flight constraints such as gravity-turn are imposed. An optimal explicit guidance algorithm in the exoatmospheric phase is also presented, the guidance algorithm provides steering command and time-to-go value directly using the current states of the vehicle and the desired orbit insertion conditions. To verify the optimality and accuracy of the algorithm simulations are performed.

  • PDF

A method to analyze the flyability of airplane trajectories with specified engine power

  • Gilles Labonte;Vincent Roberge;Mohammed Tarbouchi
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.473-494
    • /
    • 2023
  • This article introduces a formalism for the analysis of airplane trajectories on which the motion is determined by specifying the power of the engines. It explains a procedure to solve the equations of motion to obtain the value of the relevant flight parameters. It then enumerates the constraints that the dynamical abilities of the airplane impose on the amount of fuel used, the speed, the load factor, the lift coefficient, the positivity and upper boundedness of the power available. Examples of analysis are provided to illustrate the method proposed, with rectilinear and circular trajectories. Two very different types of airplanes are used in the examples: a Silver Fox-like small UAV and a common Cessna 182 Skylane.

LAUNCH OPPORTUNITIES FOR JUPITER MISSIONS USING THE GRAVITY ASSIST (행성 근접 통과를 이용한 목성 탐사선의 최적 발사 시기)

  • 송영주;유성문;박은서;박상영;최규홍;윤재철;임조령;김방엽;김한돌
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.2
    • /
    • pp.153-166
    • /
    • 2004
  • Interplanetary trajectories using the gravity assists are studied for future Korean interplanetary missions. Verifications of the developed softwares and results were performed by comparing data from ESA's Mars Express mission and previous results. Among the Jupiter exploration mission scenarios, multi-planet gravity assist mission to Jupiter (Earth-Mars-Earth-Jupiter Gravity Assist, EMEJGA trajectory) requires minimum launch energy ($C_3$) of 29.231 $Km^2$/$S^2$ with 4.6 years flight times. Others, such as direct mission and single-planet(Mars) gravity assist mission, requires launch energy ($C_3$) of 75.656 $Km^2$/$S^2$ with 2.98 years flight times and 63.590 $Km^2$/$S^2$ with 2.33 years flight times, respectively. These results show that the planetary gravity assists can reduce launch energy, while EMEJGA trajectory requires the longer flight time than the other missions.

Hardware-in-the-loop simulation of RPV autopilot using strapdown AHRS (스트랩다운 AHRS를 이용한 무인항공기(RPV) 자동조종장치의 실시간 실물 모의시험)

  • 홍성경;김태연;탁민제
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.135-140
    • /
    • 1992
  • This paper presents the configuration, HILS procedure and performance simulation results of the RPV autopilot including a strapdown AHRS. Real time hardware-in-the-loop simulation was performed by using a 3 axis flight motion simulator alonged assumed flight trajectory of the RPV. Being compared with the result of the 6 DOF simulation, the HILS results showed that the performance of the autopilot was satisfactory.

  • PDF

Trajectory Optimization of Supersonic vehicle and its Application (초음속 비행체의 궤적최적화와 연구응용 방향)

  • Park, Jung-Woo;Sung, Hong-Gye;Tahk, Min-Jea
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.411-413
    • /
    • 2009
  • This paper deals with supersonic vehicle. A supersonic vehicle has very complicated and high nonlinear thrust characteristics with respect to outer and inner environment during operation. For this reason, supersonic vehicle has many maneuver constraints and allows to operate within more narrow flight envelope. In this paper, trajectory optimization of supersonic vehicle is accomplished. The trajectory optimization problem is formulated by a discrete parameter optimization problem and the operation constraints are considered during trajectory optimization. It is shown that results of trajectory optimization give senses to fuel supply and nozzle throttle area control into effectiveness. Furthermore, general operation direction and its application for supersonic vehicles are discussed.

  • PDF

Low thrust inclined circular trajectories for airplanes

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.237-267
    • /
    • 2017
  • Automatic trajectory re-planning is an integral part of unmanned aerial vehicle mission planning. In order to be able to perform this task, it is necessary to dispose of formulas or tables to assess the flyability of various typical flight segments. Notwithstanding their importance, there exist such data only for some particularly simple segments such as rectilinear and circular sub-trajectories. This article presents an analysis of a new, very efficient, way for an airplane to fly on an inclined circular trajectory. When it flies this way, the only thrust required is that which cancels the drag. It is shown that, then, much more inclined trajectories are possible than when they fly at constant speed. The corresponding equations of motion are solved exactly for the position, the speed, the load factor, the bank angle, the lift coefficient and the thrust and power required for the motion. The results obtained apply to both types of airplanes: those with internal combustion engines and propellers, and those with jet engines. Conditions on the trajectory parameters are derived, which guarantee its flyability according to the dynamical properties of a given airplane. An analytical procedure is described that ensures that all these conditions are satisfied, and which can serve for producing tables from which the trajectory flyability can be read. Sample calculations are shown for the Cessna 182, a Silver Fox like unmanned aerial vehicle, and an F-16 jet airplane.