• 제목/요약/키워드: Flight Phase

검색결과 328건 처리시간 0.032초

Kinematical Analysis of Somersault with Twist in Men's Vault: Focusing on the Lou Yun and Akopian Motions

  • Lim, Kyu-Chan;Park, Hyung Suh
    • 한국운동역학회지
    • /
    • 제26권3호
    • /
    • pp.243-248
    • /
    • 2016
  • Objective: The aim of this study was to determine the kinematical characteristics of somersault with twist in the Lou Yun and Akopian motions and to provide useful information to gymnastic athletes in men's vault. Method: The study subjects were 12 male adult top athletes. After 12 trials (7 Lou Yun and 5 Akopian trials) filmed by using two digital high-speed camcorders set at 90 frames/sec, kinematical data were collected through the direct linear transformation (DLT) method. The mean differences in biomechanical variables were compared during the second flight upward phase. The kinematic characteristics of somersault with twist in the Lou Yun and Akopian motions were identified. Results: In Lou Yun motion, the vertical release velocity through horse breaking was not difficult to obtain, so the athletes had enough time to prepare for the twist. Therefore, the Lou Yun motion has an advantage to make a cat twist in the pike posture. In the Akopian motion, obtaining the horizontal velocity through horse pushing was so easy that the Akopian athletes attained a large angular impulse and angular momentum. Therefore, the Akopian motion has an advantage to making a tilt twist in the body tilting posture. Conclusion: This study suggests that gymnastic athletes should control their body segment movements in order to increase the twisting angular velocity of the whole body, which requires regulation of the longitudinal moment of inertia of the body. Moreover, athletes should prepare for the shoulder and hip twists early in order to make the landing position in advance.

다수의 인공위성-지상국 간 통신 스케줄 최적화 모형 (A Mathematical Model for Optimal Communication Scheduling between Multiple Satellites and Multiple Ground Stations)

  • 정유진;김흥섭
    • 산업경영시스템학회지
    • /
    • 제41권1호
    • /
    • pp.39-49
    • /
    • 2018
  • In the satellite operation phase, a ground station should continuously monitor the status of the satellite and sends out a tasking order, and a satellite should transmit data acquired in the space to the Earth. Therefore, the communication between the satellites and the ground stations is essential. However, a satellite and a ground station located in a specific region on Earth can be connected for a limited time because the satellite is continuously orbiting the Earth, and the communication between satellites and ground stations is only possible on a one-to-one basis. That is, one satellite can not communicate with plural ground stations, and one ground station can communicate with plural satellites concurrently. For such reasons, the efficiency of the communication schedule directly affects the utilization of the satellites. Thus, in this research, considering aforementioned unique situations of spacial communication, the mixed integer programming (MIP) model for the optimal communication planning between multiple satellites and multiple ground stations (MS-MG) is proposed. Furthermore, some numerical experiments are performed to verify and validate the mathematical model. The practical example for them is constructed based on the information of existing satellites and ground stations. The communicable time slots between them were obtained by STK (System Tool Kit), which is a well known professional software for space flight simulation. In the MIP model for the MS-MG problems, the objective function is also considered the minimization of communication cost, and ILOG CPLEX software searches the optimal schedule. Furthermore, it is confirmed that this study can be applied to the location selection of the ground stations.

Evaluating the Headspace Volatolome, Primary Metabolites, and Aroma Characteristics of Koji Fermented with Bacillus amyloliquefaciens and Aspergillus oryzae

  • Seo, Han Sol;Lee, Sunmin;Singh, Digar;Park, Min Kyung;Kim, Young-Suk;Shin, Hye Won;Cho, Sun A;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권8호
    • /
    • pp.1260-1269
    • /
    • 2018
  • Production of good Koji primarily depends upon the selection of substrate materials and fermentative microflora, which together influence the characteristic flavor and aroma. Herein, we performed comparative metabolomic analyses of volatile organic compounds (VOCs) and primary metabolites for Koji samples fermented individually with Bacillus amyloliquefaciens and Aspergillus oryzae. The VOCs and primary metabolites were analyzed using headspace solid phase microextraction (HS-SPME) followed by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). In particular, alcohols, ketones, and furans were mainly detected in Bacillus-fermented Koji (Bacillus Koji, BK), potentially due to the increased levels of lipid oxidation. A cheesy and rancid flavor was characteristic of Bacillus Koji, which is attributable to high content of typical 'off-flavor' compounds. Furthermore, the umami taste engendered by 2-methoxyphenol, (E,E)-2,4-decadienal, and glutamic acid was primarily detected in Bacillus Koji. Alternatively, malty flavor compounds (2-methylpropanal, 2-methylbutanal, 3-methylbutanal) and sweet flavor compounds (monosaccharides and maltol) were relatively abundant in Aspergillus-fermented Koji (Aspergillus Koji, AK). Hence, we argue that the VOC profile of Koji is largely determined by the rational choice of inocula, which modifies the primary metabolomes in Koji substrates, potentially shaping its volatolome as well as the aroma characteristics.

GNSS 원격 무결성 감시시스템 개발 (Development of Remote Integrity Monitoring System for GNSS)

  • 배중원;송재훈;전향식;남기욱;이한성
    • 항공우주기술
    • /
    • 제5권2호
    • /
    • pp.16-26
    • /
    • 2006
  • 위성항법시스템(GNSS)을 민간항공 분야에 활용하기 위해서는 국제민간항공기구가 정한 비행단계별 정확성(Accuracy), 무결성(integrity), 연속성(continuity), 가용성(availability) 요 구조건을 만족시켜야 한다. 본 논문에서는 GBAS, GRAS 등 지상기반 위성항법보강시스템 개발에 활용될 수 있는 CNSS 원격 무결성 감시시스템을 제안하고 개발결과에 대해 기술한다. GPS 수신기와 안테나로 구성된 위성신호 수신장치는 RS-232 to TC/IP 프로토콜 변환장치를 통해 데이터 처리 및 분석을 수행하는 신호처리장치의 Host PC에 연결되도록 설계되었다. 이는 GPS 수신기의 설치 위치 제한을 극복하고 수신기와 안테나 간의 물리적 거리를 줄일 수 있어 GPS 수신 신호의 열화를 방지할 수 있는 방법이다. GPS 데이터를 수신하여 처리하는 신호처리장치는 실시간 운용 및 후처리 운용이 가능하며 GBAS CAT-I급의 무결성 알고리즘과 차분보정 정보 생성을 지원하는 개발 환경을 제공한다.

  • PDF

마이크로파 레플렉토메터리를 이용한 KSIAR 플라즈마 밀도분포 재구성에 관한 연구 (Study on the Reconstruction of KSTAR Plasma Density Profiles Using Microwave Reflectometry)

  • 노영수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권8호
    • /
    • pp.365-370
    • /
    • 2005
  • Microwave diagnostics have been widely utilized to measure the important parameters of high temperature and high density plasmas. Reflectometry is known as a promising microwave diagnostic which has a number of merits to measure electron density profiles. In the KSTAR device, X-mode FM reflectometry is planned to measure the plasma density profiles. FM reflectometry is required to extract phase information on raw mixer IF signals, thereby obtaining time-of-flight of reflectometry signals. It is known that the data analysis method is crucial to determine the performance of FM reflectometry In fact, there are several analysis programs which have been utilized in various FM systems. Since each program was developed for a specific device, however, it is difficult to directly apply it to a different reactor like the KSTAR device. It is necessary, therefore, to develop a data analysis program for the KSTAR FM reflectometry. In this paper, complex digital demodulation (CDM) and wavelet transformation are examined in terms of the performance of density profile reconstruction. For the comparison of both methods, FM reflectometry signals are generated on the basis of assumed profiles and the interaction of the X-mode wave and the plasma. In order to see how well both methods work under various conditions, three types of profiles are assumed and noise effects are included. As a result, both methods work well under the condition of gentle density gradient and small noise level. As density gradient becomes steeper and noise level gets higher. the reconstruction performance of wavelet is better than that of CDM.

무인기를 이용한 광역부지 환경방사선측정 기술 현황 및 현장 적용 연구 (Technical Status of Environmental Radiation Monitoring using a UAV and Its Field Application to the Aerial Survey)

  • 지영용;민병일;서경석;정성엽;김경표;박진호
    • 한국산업정보학회논문지
    • /
    • 제25권5호
    • /
    • pp.31-39
    • /
    • 2020
  • 후쿠시마 원전사고의 교훈으로 사고단계별 다양한 방사선 탐사 수단을 이용하여 포괄적인 환경방사선을 측정하는 것이 효율적인 사고대응과 위험관리를 위하여 바람직하다. 본 연구에서는 드론 등의 무인기를 이용한 환경방사선 탐사 기술 현황으로 분광분석이 가능한 고분해능의 방사선 검출기 2대를 활용한 환경방사선 탐사시스템을 개발하고, 이를 무인기에 장착하여 직접 사고현장에 적용함으로써 그 성능을 평가하였다. 최종적으로 다양한 비행고도에서의 탐사결과를 지상 1m 높이에서의 선량률로 환산하기 위한 보정인자를 도출함으로써 성공적인 현장 적용성 평가 결과를 도출할 수 있었다.

Transonic buffet alleviation on 3D wings: wind tunnel tests and closed-loop control investigations

  • Lepage, Arnaud;Dandois, Julien;Geeraert, Arnaud;Molton, Pascal;Ternoy, Frederic;Dor, Jean Bernard;Coustols, Eric
    • Advances in aircraft and spacecraft science
    • /
    • 제4권2호
    • /
    • pp.145-167
    • /
    • 2017
  • The presented paper gives an overview of several projects addressing the experimental characterization and control of the buffet phenomenon on 3D turbulent wings in transonic flow conditions. This aerodynamic instability induces strong wall pressure fluctuations and therefore limits flight domain. Consequently, to enlarge the latter but also to provide more flexibility during the design phase, it is interesting to try to delay the buffet onset. This paper summarizes the main investigations leading to the achievement of open and closed-loop buffet control and its experimental demonstration. Several wind tunnel tests campaigns, performed on a 3D half wing/fuselage body, enabled to characterize the buffet aerodynamic instability and to study the efficiency of innovative fluidic control devices designed and manufactured by ONERA. The analysis of the open-loop databases demonstrated the effects on the usual buffet characteristics, especially on the shock location and the separation areas on the wing suction side. Using these results, a closed-loop control methodology based on a quasi-steady approach was defined and several architectures were tested for various parameters such as the input signal, the objective function, the tuning of the feedback gain. All closed-loop methods were implemented on a dSPACE device able to estimate in real time the fluidic actuators command calculated mainly from the unsteady pressure sensors data. The efficiency of delaying the buffet onset or limiting its effects was demonstrated using the quasi-steady closed-loop approach and tested in both research and industrial wind tunnel environments.

메탈폼 지지체를 이용한 액체연료 분해반응 촉매의 흡열특성 (Endothermic Properties of Liquid Fuel Decomposition Catalyst Using Metal Foam Support)

  • 문정인;김나리;정병훈;정지훈
    • Korean Chemical Engineering Research
    • /
    • 제59권4호
    • /
    • pp.481-486
    • /
    • 2021
  • 극초음속 비행체의 비행 중에 발생되는 열 문제를 해결하기 위해 탑재된 연료의 분해반응 시 나타나는 흡열효과를 이용하는 냉각기술이 개발되고 있다. 본 연구에서는 HZSM-5를 촉매로 사용하여 n-dodecane 연료의 분해반응을 수행하였으며, 촉매 분해반응의 흡열효과를 극대화하고 코크생성을 억제하기 위해 촉매를 메탈폼에 코팅하였다. 반응기는 외경 1.27 cm의 스테인리스 스틸 흐름형 반응기를 사용하였다. HZSM-5를 메탈폼에 코팅한 촉매를 사용한 촉매 분해반응 결과 흡열량은 최대 2887 kJ/kg, 기상전환율은 34% 이었으며, 메탈폼의 코크생성량은 촉매를 코팅함에 따라 촉매를 코팅하지 않은 것에 비해 약 56% 감소하였다.

Bridge Inspection and condition assessment using Unmanned Aerial Vehicles (UAVs): Major challenges and solutions from a practical perspective

  • Jung, Hyung-Jo;Lee, Jin-Hwan;Yoon, Sungsik;Kim, In-Ho
    • Smart Structures and Systems
    • /
    • 제24권5호
    • /
    • pp.669-681
    • /
    • 2019
  • Bridge collapses may deliver a huge impact on our society in a very negative way. Out of many reasons why bridges collapse, poor maintenance is becoming a main contributing factor to many recent collapses. Furthermore, the aging of bridges is able to make the situation much worse. In order to prevent this unwanted event, it is indispensable to conduct continuous bridge monitoring and timely maintenance. Visual inspection is the most widely used method, but it is heavily dependent on the experience of the inspectors. It is also time-consuming, labor-intensive, costly, disruptive, and even unsafe for the inspectors. In order to address its limitations, in recent years increasing interests have been paid to the use of unmanned aerial vehicles (UAVs), which is expected to make the inspection process safer, faster and more cost-effective. In addition, it can cover the area where it is too hard to reach by inspectors. However, this strategy is still in a primitive stage because there are many things to be addressed for real implementation. In this paper, a typical procedure of bridge inspection using UAVs consisting of three phases (i.e., pre-inspection, inspection, and post-inspection phases) and the detailed tasks by phase are described. Also, three major challenges, which are related to a UAV's flight, image data acquisition, and damage identification, respectively, are identified from a practical perspective (e.g., localization of a UAV under the bridge, high-quality image capture, etc.) and their possible solutions are discussed by examining recently developed or currently developing techniques such as the graph-based localization algorithm, and the image quality assessment and enhancement strategy. In particular, deep learning based algorithms such as R-CNN and Mask R-CNN for classifying, localizing and quantifying several damage types (e.g., cracks, corrosion, spalling, efflorescence, etc.) in an automatic manner are discussed. This strategy is based on a huge amount of image data obtained from unmanned inspection equipment consisting of the UAV and imaging devices (vision and IR cameras).

DTW와 Kalman Filter를 결합한 비행표적의 광학추적 방법 (The Optical Tracking Method of Flight Target using Kalman Filter with DTW)

  • 장석원
    • 한국항행학회논문지
    • /
    • 제25권3호
    • /
    • pp.217-222
    • /
    • 2021
  • EOTS(electro-optical tracking system)는 유도무기의 성능 평가를 위해 유도무기를 추적하여 영상을 획득하는데 활용되고 있다. 유도무기에 대한 추적을 잃어버렸을 경우 유도무기가 매우 빠르게 비행하기 때문에 운용자가 이를 다시 포착하는 것은 거의 불가능하다. 레이더나 텔레메트리 데이터를 활용하여 재 포착 하는 방법이 활용되고 있으나 데이터를 실시간으로 수신할 수 있는 통신망의 설치가 수반되어야하기 때문에 장소에 대한 제약이 따른다. 하지만 유도무기 비행시험 수행 시 계산되는 예상 궤적은 실시간으로 수신할 필요 없이 저장해두었다가 사용할 수 있기 때문에 통신망 설비와 관계없이 활용이 가능하다. 본 논문에서는 미리 알고 있는 비행체의 예상 궤적을 활용하여 비행체를 잃어버렸을 시 비행체의 위치를 예상하는 방법을 제안한다. DTW (dynamic time warping)를 통해 예상궤적과 추적궤적을 비교하여 비행체의 각속도를 추정하고 이를 Kalman Filter의 보정단계에서 관측 값으로 활용하여 비행체의 다음 상태를 예측한다. 제안한 방법의 타당성을 실제 비행체 궤적에 적용하여 검증하였다.