• Title/Summary/Keyword: Flight Obstacle

Search Result 52, Processing Time 0.011 seconds

Intelligent Obstacle Avoidance Algorithm for Autonomous Control of Underwater Flight Vehicle (수중비행체의 자율제어를 위한 지능형 장애물회피 알고리즘)

  • Kim, Hyun-Sik;Jin, Tae-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.635-640
    • /
    • 2009
  • In real system application, the obstacle avoidance system for the autonomous control of the underwater flight vehicle (UFV) operates with the following problems: it has local information because the sonar can only offer the obstacle information in a local detection area, it requires a continuous control input because the system that has reduced acoustic noise and power consumption is necessary, and further, it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an intelligent obstacle avoidance algorithm using the evolution strategy (ES) and the fuzzy logic controller (FLC), is proposed. To verify the performance of the proposed algorithm, the obstacle avoidance of UFV is performed. Simulation results show that the proposed algorithm effectively solves the problems in the real system application.

A Case Study on Application of Obstacle Limitation Criteria for Specific Conditions of Airports (특정 조건의 비행장에서 장애물제한규정 적용 사례연구)

  • Kim, DoHyun;Kim, Woong Yi
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.2
    • /
    • pp.25-30
    • /
    • 2016
  • Obstacle defines all fixed and mobile objects, or parts thereof, that are located on an area intended for the surface movement of aircraft or extend above a defined surface intended to protect aircraft in flight or stand outside those defined surfaces and that have been assessed as being a hazard to air navigation. The airspace around airports are maintained free from obstacles so as to permit the intended aeroplane operations at the airports to be conducted safely and to prevent the airports from becoming unusable by the growth of obstacles around the airports. This is achieved by establishing a series of obstacle limitation surfaces or airspace imaginary surfaces that define the limits to which objects may project into the airspace. This is a case study that shows an application of obstacle limitation criteria, which must be maintained free from an critical obstacle, for specific conditions of two airports. For the purpose of the application, aeronautical studies/flight safety influence assessments were used to identify possible solutions and select a solution that is acceptable without degrading aviation safety.

A Preliminary Study on Instrument Procedures and Frequency Interference with a planned Obstacle around an Airport (공항주변 계획된 장애물에 의한 계기절차 및 전파간섭 연구)

  • Kim, DoHyun;Hong, SeungBeom
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.4
    • /
    • pp.24-30
    • /
    • 2017
  • Obstacle defines all fixed and mobile objects, or parts thereof, that are located on an area intended for the surface movement of aircraft or extend above a defined surface intended to protect aircraft in flight or stand outside those defined surfaces and that have been assessed as being a hazard to air navigation. Aircraft operations are based on electronic supporting systems using radio frequencies to assist pilots. These frequencies can receive outside interference that change their courses or power, such as distortion, attenuation or reinforcements by an obstacle. This is a preliminary case study that shows the relation of instrument flight procedures and the degree of interferences introduced by a planned obstacle, which is a main bridge post, within the service volume of the radio navigation aids. For the purpose of this study, the case airport's data and it's VOR/DME and ILS systems' limitations are analyzed, as well as the relation of interferences between the obstacle and navigation aides were reviewed with the internal regulations in Korea.

Intelligent 3-D Obstacle Avoidance Algorithm for Autonomous Control of Underwater Flight Vehicle (수중비행체의 자율제어를 위한 지능형 3-D 장애물회피 알고리즘)

  • Kim, Hyun-Sik;Jin, Tae-Seok;Sur, Joo-No
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.323-328
    • /
    • 2011
  • In real system application, the 3-D obstacle avoidance system for the autonomous control of the underwater flight vehicle (UFV) operates with the following problems: the sonar offers the range/bearing information of obstacles in a local detection area, it requires the system that has reduced acoustic noise and power consumption in terms of the autonomous underwater vehicle (AUV), it has the UFV operation constraints such as maximum pitch and depth, and it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an intelligent 3-D obstacle avoidance algorithm using the evolution strategy (ES) and the fuzzy logic controller (FLC), is proposed. To verify the performance of the proposed algorithm, the 3-D obstacle avoidance of UFV is performed. Simulation results show that the proposed algorithm effectively solves the problems in the real system application.

Fast Detection of Power Lines Using LIDAR for Flight Obstacle Avoidance and Its Applicability Analysis (비행장애물 회피를 위한 라이다 기반 송전선 고속탐지 및 적용가능성 분석)

  • Lee, Mijin;Lee, Impyeong
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.75-84
    • /
    • 2014
  • Power lines are one of the main obstacles causing an aircraft crash and thus their realtime detection is significantly important during flight. To avoid such flight obstacles, the use of LIDAR has been recently increasing thanks to its advantages that it is less sensitive to weather conditions and can operate in day and night. In this study, we suggest a fast method to detect power lines from LIDAR data for flight obstacle avoidance. The proposed method first extracts non-ground points by eliminating the points reflected from ground surfaces using a filtering process. Second, we calculate the eigenvalues for the covariance matrix from the coordinates of the generated non-ground points and obtain the ratio of eigenvalues. Based on the ratio of eigenvalues, we can classify the points on a linear structure. Finally, among them, we select the points forming horizontally long straight as power-line points. To verify the algorithm, we used both real and simulated data as the input data. From the experimental results, it is shown that the average detection rate and time are 80% and 0.2 second, respectively. If we would improve the method based on the experiment results from the various flight scenario, it will be effectively utilized for a flight obstacle avoidance system.

Searching through the Legal Requirements of Airfield's Obstacle Limitation Surface for Extension of Goheung Aviation Test Center (고흥항공센터 확장을 위한 비행장 장애물 제한표면의 법적요건 조사)

  • Kim, Nan-Young;Han, Chang-Hwan
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.3
    • /
    • pp.1-7
    • /
    • 2012
  • Korea Aerospace Research Institute(KARI) has accomplished the planning study for setting up the mid-long term development plan of Goheung Aviation Test Center for the extensive use. In the future the aviation center will have a role of the complex center for the flight test, component test and R&D in Korea. KARI searches the legal requirements and informations for constructing the aviation test airfield in Goheung. Aviation law describes a lot of requirements to construct an airfield and the airfield also needs runway, equipments/facilities, obstacle limitation surfaces/distances, limitation altitudes and air space etc.. In this study the research results for the obstacle limitation Surface are mainly presented relating to the existing runway and the new large-scaled runway in Goheung.

Development of walking assistance robot for the blind (시각장애인을 위한 보행보조 로봇의 개발)

  • Kang, Jeong-Ho;Kim, Chang-Geol;Lee, Seung-Ha;Song, Byung-Seop
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.286-293
    • /
    • 2007
  • For safe walking of the people who are blind, walking assistance robot which can detecting and avoiding the obstacle was investigated. The implemented prototype walking assistance robot consists of a obstacle detecting module, a user interface using acoustic signal and a driving module. The obstacle detecting module uses 6 ultrasonic sensors those located at the front part of the robot can perceive the obstacle which is in 3 meter distances and $180^{\circ}$ degrees. It calculates the distance and degree from the obstacle using TOF (time of flight) method and decides the 3-dimensional location of the obstacle. The obstacle information is delivered to the user using acoustic alarm and guide sound. The robot is designed to avoid by itself when the obstacle is detecting and the user only follows it to safe walking. After the designed robot was implemented, driving and obstacle detecting experiments were carried out. The result showed that the designed walking assistance robot will help the people who are blind to walk around safe.

A study on walking aids for the blind (시각장애자의 보행지원에 관한 연구)

  • Ham, K.K.;Han, S.H.;Yang, S.Y.;Kim, H.G.;Huh, W.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.131-135
    • /
    • 1997
  • We implementated an ultrasonic wave cane for the blind. The cane detect walking obstacle and provide a walking direction. The cane used time of flight method of ultrasonic-wave for a measurement of obstacle distance and fluxgate geomagnetic sensor for guidance of walking direction. This system can detect an obstacle of upward, forward, downward and that warn to the blind with vibration, pitch sound. And the blind can know walking direction to voice output. As a result, the blind could efficiently avoid a exposed obstacle, obstacles beyond knee, an exposed street obstacle, a branch of tree person's height and it is usable search for surrounding land mark.

  • PDF

Radar Sensor System Concept for Collision Avoidance of Smart UAV (무인기 충돌방지를 위한 레이다 센서 시스템 설계)

  • Kwag, Young-Kil;Kang, Jung-Wan
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.203-207
    • /
    • 2003
  • Due to the inherent nature of the low flying UAV, obstacle detection is a fundamental requirement in the flight path to avoid the collision from obstacles as well as manned aircraft. In this paper, a preliminary sensor requirements of an obstacle detection system for UAV in low-altitude flight are analyzed, and the automated obstacle detection sensor system is proposed assessing both passive and active sensors such as EO camera, IR, Laser radar, microwave and millimeter radar. In addition, TCAS (Traffic Alert and Collision Avoidance System) are reviewed for the collision avoidance of the manned aircraft system. It is suggested that small-sized radar sensor is the best candidate for the smart UAV because an active radar can provide the real-time informations on range and range rate in the all-weather environment. However, an important constraints on small UAV should be resolved in terms of accommodation of the mass, volume, and power allocated in the payload of the UAV system design requirements.

  • PDF

A Theoretical Study and Empirical Analysis of New Obstacle Limitation Surface (OLS) - The Case of Incheon International Airport - (신 장애물제한표면에 관한 이론적 고찰과 실증분석 - 인천국제공항을 중심으로 -)

  • Choi, Sangil;Yu, Soojeong;Kwak, Kiyeol;Kim, Hyeonmi;Kim, Huiyang
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.3
    • /
    • pp.28-37
    • /
    • 2022
  • Obstacle Limitation Surface (OLS) is conceptual surface establishing the airspace around aerodromes to be maintained from obstacles to ensure safe aircraft operations. Despite advances in the technologies for aircraft, navigation systems and the development of new flight procedures, the criteria defining OLS have not been amended since its initial establishment, resulting in the overestimation of areas for height restriction. As there were requests to examine OLS at the 12th Air Navigation Conference and the 38th ICAO Assembly, the research on the OLS revision began in earnest and ICAO has proposed Obstacle Free Surface (OFS) and Obstacle Evaluation Surface (OES) as an alternative of the existing OLS. OFS is surfaces where obstacles shall not be permitted, and OES is ones where obstacles be evaluated with an aeronautical study and could be permitted under some conditions. The purpose of this study is to preemptively assess the efficiency and safety of OFS and OES by applying them to the second runway (15L/33R) of Incheon International Airport. The results show that OFS and OES are capable of serving the instrument flight procedure safely with a smaller obstacle clearance area compared to the existing OLS.