• Title/Summary/Keyword: Flight Dynamic

Search Result 389, Processing Time 0.027 seconds

Development of the Educational Simulator for Aircraft Dynamic Characteristic Analysis with the State-Space Method (상태.공간 방식에 의한 항공기 동특성 해석 교육 시뮬레이터 개발)

  • Yoon, Sun-Ju
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.1
    • /
    • pp.9-16
    • /
    • 2009
  • The analysis of an aircraft flight dynamics is recently very convenient because of the introduction of state-space method and a well-developed package software. The representation of a dynamic system is described as a simple form of matrix calculation and the unique form of model is available for the linear or nonlinear, time variant or time invariant, mono variable or multi variable system with state-space method. And this analysis can be simplified with the specific functions of a package software and it is very simplified to execute the simulation of the dynamic characteristics for an aircraft model with an interactive graphical treatment. The purpose of this study is to develope an educational flight simulator for the students who need to analyze the dynamic characteristics of an aircraft that is primarily to execute the simulation for the analysis of the transient response and frequency response of an aircraft stability. Furthermore the dynamic characteristics of an aircraft motion is set up as dynamical animation tool for the control response on 3-axis motions of an aircraft.

  • PDF

Flight Control System Design and Verification Process (비행제어시스템 설계 및 검증 절차)

  • Kim, Chong-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.824-836
    • /
    • 2008
  • Relaxed static stability(RSS) concept has been applied to improve aerodynamic performance of modern version supersonic jet fighter aircraft. Therefore, flight control systems are necessary to stabilize an unstable aircraft, and provides adequate handling qualities and achieve performance enhancements. Standard FCSDVP (Flight Control System Design and Verification Process) is provided to reduce development period of the flight control system. In addition, if this process is employed in developing flight control system, it reduces the trial and error for development and verification of flight control system. This paper addresses the flight control system design and verification process for the RSS aircraft utilizing design goal based on military specifications, linear and nonlinear system design and verification based on universal software, handling quality test based on HILS(Hardware In-the-Loop Simulator) environment, and ground and flight test results to verify aircraft dynamic flight responses.

A Comparison Study on the Semi-empirical Analysis Approach for the Flight Characteristics of a Light Airplane (경비행기의 비행특성 분석 및 준경험적 분석 방법 비교)

  • Lee, Jung-hoon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.1-9
    • /
    • 2022
  • In this study, for development of the MDO (Multi Disciplinary Optimization) framework, the flight dynamic characteristic parameters of the ChangGong-91, a light aircraft, were extracted by an analytical method based on various semi-empirical methods, and the flight test method was compared and evaluated. The semi-empirical analysis methods for comparative subjects were the Perkins method, McCormick method, and Smetana method. The major stability/control derivatives and dynamic factors were calculated, using each method. As the comparison criteria, the flight test derivative estimates and dynamic factors were processed, using the output error method. Additionally, the flight characteristics of the light aircraft were analyzed and evaluated according to the provisions of the Korean Airworthiness Standard (KAS) of the Ministry of Land, Infrastructure and Transport, and MIL-F-8785C for the U.S. military.

Instrument Flight Certification Process and Flight Test Results of Korean Utility Helicopter (한국형 기동헬기 계기비행 인증절차 및 비행시험 결과)

  • Kwon, Hyuk-Jun;Park, Jong-Hoo;Park, Jae-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.173-180
    • /
    • 2014
  • In this paper, the instrument flight certification process and flight test results of Korean Utility Helicopter (KUH) are presented. For the instrument flight certification, the suitability of installed equipments and instruments have been reviewed and verified by ground and flight tests. Next, static and dynamic stability test are conducted in accordance with FAR-29 Appendix B. The static stability is determined by the change of speed and attitude according to control inputs. The dynamic stability is evaluated by how quickly the response of the helicopter due to long and short period control inputs are decreased. The pilot workload evaluation are also carried out by simulated IMC flight tests. This paper presents the workload assessment results when some failures are occurred at cockpit instruments, engine or flight control systems as well as the normal situation. After the simulated IMC flight test is completed, actual instrument flight test are conducted in a real IMC environment according to the air traffic controls.

Automatic Processing Techniques of Rotorcraft Flight Data Using Data Mining (회전익항공기 운동모델 개발을 위한 데이터마이닝을 이용한 비행데이터 자동 처리 기법)

  • Oh, Hyeju;Jo, Sungbeom;Choi, Keeyoung;Roh, Eun-Jung;Kang, Byung-Ryong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.823-832
    • /
    • 2018
  • In general, the fidelity of the aircraft dynamic model is verified by comparison with the flight test results of the target aircraft. Therefore, the reference flight data for performance comparisons must be extracted. This process requires a lot of time and manpower to extract useful data from the vast quantity of flight test data containing various noise for comparing fidelity. In particular, processing of flight data is complex because rotorcraft have high non-linearity characteristics such as coupling and wake interference effect and perform various maneuvers such as hover and backward flight. This study defines flight data processing criteria for rotorcraft and provides procedures and methods for automated processing of static and dynamic flight data using data mining techniques. Finally, the methods presented are validated using flight data.

A study on the acoustic loads prediction of flight vehicle using computational fluid dynamics-empirical hybrid method (하이브리드 방법을 이용한 비행 중 비행체 음향하중 예측에 관한 연구)

  • Park, Seoryong;Kim, Manshik;Kim, Hongil;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.163-173
    • /
    • 2018
  • This paper performed the prediction of the acoustic loads applied to the surface of the flight vehicle during flight. Acoustic loads during flight arise from the pressure fluctuations on the surface of body. The conventional method of predicting the acoustic loads in flight uses semi-empirical method derived from theoretical and experimental results. However, there is a limit in obtaining the flow characteristics and the boundary layer parameters of the flight vehicle which are used as the input values of the empirical equation through experiments. Therefore, in this paper, we use the hybrid method which combines the results of CFD (Computational Fluid Dynamics) with semi-empirical methods to predict the acoustic loads acting on flight vehicle during flight. For the flight vehicle with cone-cylinder-flare shape, acoustic loads were estimated for the subsonic, transonic, supersonic, and Max-q (Maximum dynamic pressure) condition flight. For the hybrid method, two kind of boundary layer edge estimation methods based on CFD results are compared and the acoustic loads prediction results were compared according to empirical equations presented by various researchers.

Flight Environment Simulation Test for Reliability Improvement of Precise Guided Missile (유도무기의 신뢰성 향상을 위한 비행환경 모사시험 방안 연구)

  • Choi, Seung Hyuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.781-787
    • /
    • 2016
  • We introduce FEST (Flight Environment Simulation Test) procedures for precise guided missiles to reliably improve systems. Flight vibration specification was established based on power spectral density curves calculated from flight test data of a high speed precise guided missile. A FEST pre-profile was developed according to flight vibration specification and delivered to a precise guided missile assembly. Vibration responses were measured by installing accelerometers on electronic components vulnerable to dynamic forces. The FEST profile was adjusted by comparing the vibration responses and the flight vibration specification. Subsequently, the FEST profile was repeatedly modified through trial and error, because the responses were similar to the flight environment. The modified FEST profile enabled performance testing of assembled precise guided missiles under simulated flight conditions on the ground, where unexpected errors could be corrected before the flight tests, leading to cost and risk reduction in the development of the precise guided missile system.

Dynamic Culling Scheme Based on Altitude for Real-Time Rendering System (고도에 따른 렌더링 시스템을 위한 동적 컬링 방안)

  • Lee, Chungjae;Kang, Seokyoon;Kim, Ki Il
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.2
    • /
    • pp.73-79
    • /
    • 2015
  • Dynamic culling scheme is usually implemented to handle overhead caused by rendering the massive large-scale terrain data in flight simulator. However, existing culling scheme without considering altitude is not suitable for flight simulator due to additional computational overhead. To solve this problem, in this paper, we propose hybrid approach by applying two dynamic culling schemes depending on altitude. In addition, we remove unnessary computational overhead by creating different z-map resolution when aircraft changes its altitude. The proposed scheme is implemented with open graphic library and tested with real terrain data. Through the experimental results, we can recognize the improved rendering speed about 8 to 73 percents as compared to existing scheme.

Flight Dynamic Identification of a Model Helicopter using CIFER®(II) - Frequency Response Analysis - (CIFER®를 이용한 무인 헬리콥터의 동특성 분석 (II) - 주파수 응답 해석 -)

  • Bae, Yeoung-Hwan;Koo, Young-Mo
    • Journal of Biosystems Engineering
    • /
    • v.36 no.6
    • /
    • pp.476-483
    • /
    • 2011
  • The aerial application using an unmanned helicopter has been already utilized and an attitude controller would be developed to enhance the operational convenience and safety of the operator. For a preliminary study of designing flight controller, a state space model for an RC helicopter would be identified. Frequency sweep flight tests were performed and time history data were acquired in the previous study. In this study, frequency response of the flight test data of a small unmanned helicopter was analyzed by using the CIFER software. The time history flight data consisted of three replications each for collective pitch, aileron, elevator and rudder sweep inputs. A total of 36 frequency responses were obtained for the four control stick inputs and nine outputs including linear velocities and accelerations and angular velocities in 3-axis. The results showed coherence values higher than 0.6 for every primary control inputs and corresponding on-axis outputs for the frequency range from 0.07 to 4 Hz. Also the analysis of conditioned frequency response showed its effectiveness in evaluating cross coupling effects. Based on the results, the dynamic characteristics of the model helicopter can further be analyzed in terms of transfer functions and the undamped natural frequency and damping ratio of each critical mode.

Parameter Identification Of Smart UAV 40% scale Using CIFER (CIFER를 이용한 스마트무인기 40%축소기 종운동모델 변수추정)

  • Yi, Hye-Won;Choi, Hyoung-Sik;Kim, Eung-Tai
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.31-37
    • /
    • 2008
  • Flight-test is necessary at the identification of dynamic model of flight vehicle. A commonly faced problem is that once the flight-test instrumentation system is difficult to reschedule in the vehicle at the end of the test. This paper identified the parameter of dynamic model of vehicle using measurement data of non-flight test. The identification algorithm is based on frequency response identification method (CIFER) dealing with a longitudinal motion of Smart UAV 40% scale.

  • PDF