• 제목/요약/키워드: Flight Data

Search Result 1,376, Processing Time 0.03 seconds

TECHNICAL PAPERS : An Investigation on the Propellant Consumption Rate Gauged from the Low-Earth-Orbit Spacecraft (기술논문 : 저궤도 위성의 추진제 소모율 계측에 관한 고찰)

  • Kim,In-Tae;Heo,Hwan-Il;Kim,Jeong-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.113-119
    • /
    • 2003
  • During the mission operation time, it is very important to estimate the spacecraft propellant remaining as accurately as possible. This is because the quantity of propellant is related directly to how long the satellite can be operated ín orbit. There are two different methods for spacecraft propellant gauging; the PVT method and the book-keeping method. This paper describes the characteristics and applications of these methods using the flight operation data of KOMPSAT-1. Additionally, propellant consumption rates in delta-V maneuvering and each attitude control submode are analyzed according to spacecraft operation modes. The earth search submode shows the highest propellant consumption rate.

Navigation Augmentation in Urban Area by HALE UAV with Onboard Pseudolite during Multi-Purpose Missions

  • Kim, O-Jong;Yu, Sunkyoung;No, Heekwon;Kee, Changdon;Choi, Minwoo;Seok, Hyojeong;Yoon, Donghwan;Park, Byungwoon;Jee, Cheolkyu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.545-554
    • /
    • 2017
  • Among various applications of the High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV), this paper has a focus on the Global Positioning System (GPS) utilizing pseudolite and its improved performance, particularly during the multi-purpose missions. In a multi-purpose mission, the HALE UAV follows a specified flight trajectory for both navigation applications and missions. Some of the representative HALE missions are remote exploration, surveillance, reconnaissance, and communication relay. During these operations, the HALE UAV can also be an additional positioning signal source as it broadcast signals using pseudolite. The pseudolite signal can improve the availability, accuracy, and reliability of the GPS particularly in areas with poor signal reception, such as shadowed regions between tall buildings. The improvement in performance of navigation is validated through simulations of multi-purpose missions of the solar-powered HALE UAV in an urban canyon. The simulation includes UAV trajectory generation at stratosphere and uses actual geographical building data. The results indicate that the pseudolite-equipped HALE UAV has the potential to enhance the performance of the satellite navigation system in navigationally degraded regions even during multi-purpose operations.

Effect Verification of Wearable Assisting Wear for Increasing Golf Carry Distance (골프 비거리 증가를 위한 기능성 보조 웨어의 효과 검증)

  • Park, Yang-Sun;Woo, Byung-Hoon;Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.4
    • /
    • pp.421-428
    • /
    • 2012
  • The purpose of this study was to verify the effects of developed assisting wear which maximize trunk(back) muscle's stretch-shortening effect during backswing and downswing for increasing golf ball carrying distance. Design and fabrication of assistive wear were performed based on the results of analyzed data of trunk EMG activity from the golf drive swings of elite professional male golfers during back swing and downswing phases. After the prototype of wear was produced, surface EMG and Flight scope tests were conducted to verify the effectiveness of the wear for increasing distance to the professional golfers. Results indicated that wearing trial showed significant longer carry distance than the non-wearing trial(p<.001). The carry distance of wearing trial showed an average 229 m compared to the non-wearing trial, the average 225 m. The swing with wearing also produced significantly faster ball speed than the trial without wearing(p<.05). Average 245 Km/h and 244 Km/h were produced for the swing with and without wearing trails, respectively. EMG results also indicated that the muscle activity of left psoas was significantly increased for wearing trial during downswing and near the impact. Thus, this may affect positively to increase club head speed. The activity of the left latissimus dorsi was dramatically increased during the final stage of swing. This generates elongation effect for longer follow-through and increased impulse between club and ball so eventually valid assistance to increase carry distance. Therefore, the developed assisting wear was proved to be effective tool for increasing golf ball carry distance with maximizing trunk(back) muscle's stretch-shortening effect during backswing and downswing.

Probabilistic Approach for Fighter Inlet Hammershock Design Pressure (전투기 흡입구 해머쇼크 설계압력에 대한 확률론적 접근법)

  • Bae, Hyo-gil;Lee, Hoon Sik;Kim, Yun-mi;Jeong, In Myon;Lee, SangHyo;Cho, Dae-yeong
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.72-78
    • /
    • 2019
  • Inlet hammershock is the critical loads condition for designing the inlet duct structure of a fighter. The sudden flow reduction in engine compressor causes inlet hammershock with high pressure. The traditional method was used to combine extreme conditions (maximum speed, sea level altitude, and cold day) to analyze this compression wave inlet hammershock pressure. However, after the 90s there have been papers that presented the probabilistic approach for the inlet hammershock to achieve the appropriate design pressure. This study shows how to analyze the inlet hammershock pressure by making practical use of the Republic of Korea Air Force real flight usage data under probabilistic approach and then analyze approximately 30% decreased inlet hammershock pressure compared with the traditional valve.

Remote Fault Detection in Conveyor System Using Drone Based on Audio FFT Analysis (드론을 활용하고 음성 FFT분석에 기반을 둔 컨베이어 시스템의 원격 고장 검출)

  • Yeom, Dong-Joo;Lee, Bo-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.10
    • /
    • pp.101-107
    • /
    • 2019
  • This paper proposes a method for detecting faults in conveyor systems used for transportation of raw materials needed in the thermal power plant and cement industries. A small drone was designed in consideration of the difficulty in accessing the industrial site and the need to use it in wide industrial site. In order to apply the system to the embedded microprocessor, hardware and algorithms considering limited memory and execution time have been proposed. At this time, the failure determination method measures the peak frequency through the measurement, detects the continuity of the high frequency, and performs the failure diagnosis with the high frequency components of noise. The proposed system consists of experimental environment based on the data obtained from the actual thermal power plant, and it is confirmed that the proposed system is useful by conducting virtual environment experiments with the drone designed system. In the future, further research is needed to improve the drone's flight stability and to improve discrimination performance by using more intelligent methods of fault frequency.

High Speed Propulsion System Test Research Using a Shock Tunnel (충격파 터널을 이용한 고속추진기관 시험 연구)

  • Park, Gisu;Byun, Jongryul;Choi, Hojin;Jin, Yuin;Park, Chul;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.43-53
    • /
    • 2014
  • Shock tunnels are known to be capable of simulating flow-field environments of supersonic and hypersonic flights. They have been operated successfully world-wide for almost half a century. As a consequence of the strong interest in hypersonic vehicles in Korea, attention has been given on this type of facility and so an intermediate-sized shock tunnel has lately been built at KAIST. In the light of this, this paper presents our tunnel performance and some of the model scramjet test data. The freestream flow used in this work replicates a supersonic combustor environment for a Mach 5.7 flight speed.

Transonic buffet alleviation on 3D wings: wind tunnel tests and closed-loop control investigations

  • Lepage, Arnaud;Dandois, Julien;Geeraert, Arnaud;Molton, Pascal;Ternoy, Frederic;Dor, Jean Bernard;Coustols, Eric
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.2
    • /
    • pp.145-167
    • /
    • 2017
  • The presented paper gives an overview of several projects addressing the experimental characterization and control of the buffet phenomenon on 3D turbulent wings in transonic flow conditions. This aerodynamic instability induces strong wall pressure fluctuations and therefore limits flight domain. Consequently, to enlarge the latter but also to provide more flexibility during the design phase, it is interesting to try to delay the buffet onset. This paper summarizes the main investigations leading to the achievement of open and closed-loop buffet control and its experimental demonstration. Several wind tunnel tests campaigns, performed on a 3D half wing/fuselage body, enabled to characterize the buffet aerodynamic instability and to study the efficiency of innovative fluidic control devices designed and manufactured by ONERA. The analysis of the open-loop databases demonstrated the effects on the usual buffet characteristics, especially on the shock location and the separation areas on the wing suction side. Using these results, a closed-loop control methodology based on a quasi-steady approach was defined and several architectures were tested for various parameters such as the input signal, the objective function, the tuning of the feedback gain. All closed-loop methods were implemented on a dSPACE device able to estimate in real time the fluidic actuators command calculated mainly from the unsteady pressure sensors data. The efficiency of delaying the buffet onset or limiting its effects was demonstrated using the quasi-steady closed-loop approach and tested in both research and industrial wind tunnel environments.

Implementation of theVerification and Analysis System for the High-Resolution Stereo Camera (고해상도 다기능 스테레오 카메라 지상 검증 및 분석 시스템 구현)

  • Shin, Sang-Youn;Ko, Hyoungho
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.471-482
    • /
    • 2019
  • The mission of the high-resolution camera for the lunar exploration is to provide 3D topographic information. It enables us to find the appropriate landing site or to control accurate landing by the short distance stereo image in real-time. In this paper, the ground verification and analysis system using the multi-application stereo camera to develop the high-resolution camera for the lunar exploration are proposed. The mission test items and test plans for the mission requirement are provided and the test results are analyzed by the ground verification and analysis system. For the realistic simulation for the lunar orbiter, the target area that has similar characteristics with the real lunar surface is chosen and the aircraft flight is planned to take image of the area. The DEM is extracted from the stereo image and compose three dimensional results. The high-resolution camera mission requirements for the lunar exploration are verified and the ground data analysis system is developed.

Aerodynamic Analysis Based on the Truncation Ratio of Guided-Weapon Nose Using CFD (전산유체역학을 이용한 유도무기 선두부 절단 비율에 대한 공력해석)

  • Jeong, Kiyeon;Kang, Dong-Gi;Lee, Daeyeon;Noh, Gyeongho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.4
    • /
    • pp.245-255
    • /
    • 2019
  • This paper describes on aerodynamic analysis based on the truncation rate of guided-weapon nose using computational fluid dynamics. The shape to perform the analysis is only the body of the guided weapon and the diameter to length ratio is 10.7. Three nose shapes were selected and hemisphere, 25% and 50% truncation were compared. For the accurate CFD analysis of the body, the grid method and the analytical method were selected and verified using NASA wind tunnel test data. For the three nose shapes, the drag analysis for the flight Mach number is 6~20% different. This difference was analyzed by the pressure distribution from nose to base.

Investigation of the body distribution of load pressure and virtual wear design of short pants harnesses in flying condition (플라잉 상태에서 바지형태의 하네스에 대한 하중압력 분포 측정 및 가상착의 적용)

  • Kwon, MiYeon
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.23 no.3
    • /
    • pp.11-21
    • /
    • 2021
  • Virtual reality is currently mainly used in games, but is starting to be applied as a variety of media fields, such as broadcasting and film. Virtual reality provides more fun than reality, and can provide new experiences in areas that cannot be experienced in reality due to the constraints of time, space, and environment. In particular, as the social non-contact arena has increased due to COVID-19, it is being applied to education, health, and medical industries. The contents are further expanding into design and military fields. Therefore, the purpose of this study was to observe the change in distribution of load and pressure felt by the body in the flying state while wearing a short pants harness, which are mainly used in the game and entertainment industry. In the experiment, the average pressure in the flying state was measured by attaching a pressure sensor to the back and front of a human mannequin. As a result, it was confirmed that the load concentrated on the waist in the flying state was 44 N, with a pressure of 1353 kPa. The pressure distribution was concentrated in front of the center of gravity, and was measured was at 98% by the pressure sensors, with an average pressure value of approximately 15 kPa, and a pressure value of approximately 12 kPa at the back, which was measured at 67% by the pressure sensor. The results of the load and pressure distribution measurement are presented as fundamental data to improve the wearability and comfort of harnesses in the future, and are compared to actual measured pressure values by analyzing the clothing pressure in flight through virtual wear of harnesses through the CLO 3D program.