• Title/Summary/Keyword: Flexure load

Search Result 224, Processing Time 0.026 seconds

Evaluation of Fracture Toughness of Dynamic Interlaminar for CFRP Laminate Plates by Resin Content (수지함량에 따른 CFRP 적층판의 층간파괴 인성평가)

  • 김지훈;양인영;심재기
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.4
    • /
    • pp.43-49
    • /
    • 2003
  • This research work has been carried out for finding J-integral in mode II of CFRP(carbon fiber reinforced plastics) laminate plates based on the classical bar theory in dynamic conditions with consideration of the effect of inertia forces, eventually to lead to finding the dynamic inter-layer fracture toughness. Dynamic inter-layer fracture toughness was found by a self-made ENF(End Notched Flexure) experimental apparatus using Split Hopkinson's Bar(SHPB), and also observed the variation of the fracture toughness haying different resin contents and fiber arrangements of CFRP specimen([$0_3^{\circ}/90_3^{\circ}/0_6^{\circ}/90_3^{\circ}/0_3^{\circ}$], [$0_{20}^{\circ}$], [$0_5^{\circ}/90_{10}^{\circ}/0_5^{\circ}$]). As an experimental result, in either cases of quasi-static or dynamic load condition, the critical load and the inter-layer fracture toughness increased sharply depending on the increase of resin contents. Therefore, it could, be concluded that the effect by resin contents is the major factor determining the inter-layer fracture toughness in the CFRP laminate plates.

Experimental study on hysteretic properties of SRC columns with high steel ratio

  • Lu, Xilin;Yin, Xiaowei;Jiang, Huanjun
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.287-303
    • /
    • 2014
  • 8 steel reinforced concrete (SRC) columns with the encased steel ratio of 13.12% and 15.04% respectively were tested under the test axial load ratio of 0.33-0.80 and the low-frequency cyclic lateral loading. The cross sectional area of composite columns was $500mm{\times}500mm$. The mechanical properties, failure modes and deformabilities were studied. All the specimens produced flexure failure subject to combined axial force, bending moment and shear. Force-displacement hysteretic curves, strain curves of encased steels and rebars were obtained. The interaction behavior of encased steel and concrete were verified. The hysteretic curves of columns were plump in shapes. Hysteresis loops were almost coincident under the same levels of lateral loading, and bearing capacities did not change much, which indicated that the columns had good energy-dissipation performance and seismic capacity. Based on the equilibrium equation, the suggested practical calculation method could accurately predict the flexural strength of SRC columns with cross-shaped section encased steel. The obtained M-N curves of SRC columns can be used as references for further studies.

Improvement of Structural Performance for the Precast Box Culvert (지하 프리캐스트 박스 암거의 구조적 성능 개선에 관한 연구)

  • 조병완;태기호;이계삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.393-398
    • /
    • 2000
  • To use concrete box culverts effectively, precast goods are manufactured at a factory, then linked and anchored with prestressing tendon at a field. However, the corrosion of rebar and prestressing tendon in the box culverts utilizing portland cement concrete is issued when the cracks occur at a underground water level. It has been reported that reported that expansive concrete, compared with portland cement concrete, has many structural advantages such as increasing capacity of watertight, controling initial crack and improving durability due to its property of expansion. During flexure test with RC beam made from expansive concrete, in the case of a constant section of concrete element, the lower steel ratio is, and in the case of a constant steel ratio, the more incremental the section of concrete element, the more incremental the amount of chemical prestress by expansive concrete is. At the segment of the box culverts using expansive concrete, the numbers of crack and its gap is reduced, and ultimate load and initial crack load is much larger than the segment at which expansive concrete is nor used. Also lay-out of tendon with a curvature generate upward force so that deflection is reduced. Through the whole procedure, it could be confirmed that performance precast box culvert by means of using expansive concrete is improved.

  • PDF

Capacity and the moment-curvature relationship of high-strength concrete filled steel tube columns under eccentric loads

  • Lee, Seung-Jo
    • Steel and Composite Structures
    • /
    • v.7 no.2
    • /
    • pp.135-160
    • /
    • 2007
  • Recently, CFT column has been well-studied and reported on, because a CFT column has certain superior structural properties as well as good productivity, execution efficiency, and improved rigidity over existing columns. However, CFT column still has problems clearing the capacity evaluation between its steel tube member and high-strength concrete materials. Also, research on concrete has examined numerical values for high-strength concrete filled steel square tube columns (HCFT) to explain transformation performance (M-${\phi}$) when a short-column receives equal flexure-moment from axial stress. Moment-curvature formulas are proposed for HCFT columns based on analytic assumption described in this paper. This study investigated structural properties (capacity, curvature), through a series of experiments for HCFT with key parameters, such as strength of concrete mixed design (58.8 MPa), width-thickness ratio (D/t), buckling length to sectional width ratio (Lk/D) and concrete types (Zeolite, Fly-ash, Silica-fume) under eccentric loads. A comparative analysis executed for the AISC-LRFD, AIJ and Takanori Sato, etc. Design formulas to estimate the axial load (N)-moment (M)-curvature (${\phi}$) are proposed for HCFT columns based on tests results described in this paper.

Effectiveness of seismic repairing stages with CFRPs on the seismic performance of damaged RC frames

  • Duran, Burak;Tunaboyu, Onur;Kaplan, Onur;Avsar, Ozgur
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.233-244
    • /
    • 2018
  • This study aims at evaluating the performance of repairing technique with CFRPs in recovering cyclic performance of damaged columns in flexure in terms of structural response parameters such as strength, dissipated energy, stiffness degradation. A 2/3 scaled substandard reinforced concrete frame was constructed to represent the substandard RC buildings especially in developing countries. These substandard buildings have several structural deficiencies such as strong beam-weak column phenomenon, improper reinforcement detailing and poor material properties. Flexural plastic hinges occurred at the columns ends after testing the substandard specimen under both constant axial load and reversed cyclic lateral loading. Afterwards, the damaged columns were externally wrapped with CFRP sheets both in transverse and longitudinal directions and then retested under the same loading protocol. In addition, ambient vibration measurements were taken from the undamaged, damaged and the repaired specimens at each structural repair steps to identify the effectiveness of each repairing step by monitoring the change in the natural frequencies of the tested specimen. The ambient vibration test results showed that the applied repairing technique with external CFRP wrapping was proved to recover stiffness of the pre-damaged specimen. Moreover, the lateral load capacity of the pre-damaged substandard RC frame was restored with externally bonded CFRP sheets.

An independent distortional analysis method of thin-walled multicell box girders

  • Park, Nam-Hoi;Kang, Young-Jong;Kim, Hee-Joong
    • Structural Engineering and Mechanics
    • /
    • v.21 no.3
    • /
    • pp.275-293
    • /
    • 2005
  • When a thin-walled multicell box girder is subjected to an eccentric load, the distortion becomes an important global response in addition to flexure and torsion. The three global responses appear in a combined form when a conventional shell element is used thus it is not an easy task to examine the three global responses separately. This study is to propose an analysis method using conventional shell element in which the three global responses can be separately decomposed. The force decomposition method which was designed for a single-cell box girder by Nakai and Yoo is expanded herein to multicell box girders. The eccentric load is decomposed in the expanded method into flexural, torsional, and multimode distortional forces by using the force equilibrium. From the force decomposition, the combined global responses of multicell box girders can be resolved into separate responses and the distortional response which is of primary concern herein can be obtained separately. It is shown from a series of extensive comparative studies using three box girder bridge models that the expanded method produces accurate decomposed results. Noting that the separate consideration of individual global response is of paramount importance for optimized multicell box girder design, it can be said that the proposed expanded method is extremely useful for practicing engineers.

Inelastic design of high-axially loaded concrete columns in moderate seismicity regions

  • Ho, Johnny Ching Ming
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.559-578
    • /
    • 2011
  • In regions of high seismic risk, high-strength concrete (HSC) columns of tall buildings are designed to be fully ductile during earthquake attack by providing substantial amount of confining steel within the critical region. However. in areas of low to moderate seismic risk, the same provision of confining steel is too conservative because of the reduced seismic demand. More critically, it causes problematic steel congestion in the beam-column joints and column critical region. This will eventually affect the quality of concrete placing owing to blockage. To relieve the problem, the confining steel in the critical region of HSC columns located in low to moderate seismicity regions can be suitably reduced, while maintaining a limited ductility level. Despite the advantage, there are still no guidelines developed for designing limited ductility HSC columns. In this paper, a formula for designing limited ductility HSC columns is presented. The validity of the formula was verified by testing half-scale HSC columns subjected to combined high-axial load and flexure, in which the confining steel was provided as per the proposed formula. From the test results, it is evident that the curvature ductility factors obtained for all these columns were about 10, which is the generally accepted level of limited ductility.

An Application of Strength Reduction Factors to Reinforced Concrete Columns considering Ductility (연성을 고려한 철근콘크리트 기둥의 강도감소계수 적용에 관한 연구)

  • 손혁수;이재훈
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.147-156
    • /
    • 1999
  • Current design code states that the strength reduction factor shall be permitted to be increased linearly from that for axial compression to that for flexure as the design axial load strength $\Phi$cPn decrease from 0.1fckAg to zero. Since this empirically adopted axial load level of $\Phi$cPn=0.1fckAg considers only sectional area and concrete strength, the other variables such as steel ratio, steel yielding strength, and steel arrangement can not be considered. This research is performed to investigate the consistency and the rationality of the code requirement for determination of column design strength. A nonlinear axial force-moment-curvature analysis was conducted in order to investigate the ductility of reinforced concrete column sections. As the result of ductility analysis, it was found that the ductility at the axial force of $\Phi$cPn=0.1fckAg represented a lock of consistency for the various variable contained sections. Therefore, a more reasonable application method of strength reduction factor is proposed, that is based on the strain ductility index.

Seismic rehabilitation of substandard RC columns with partially deteriorated concrete using CFRP composites

  • Hou, Dongxu;Wu, Zhimin;Zheng, Jianjun;Cui, Yao
    • Computers and Concrete
    • /
    • v.15 no.1
    • /
    • pp.1-20
    • /
    • 2015
  • Many existing reinforced concrete (RC) columns in structures tend to become substandard RC ones due to updated standards or environmental changes. These substandard columns may alter the behaviors of the whole structure and therefore are in urgent need of seismic retrofitting. Owing to their superior advantages, carbon fiber reinforced polymer (CFRP) composites are widely used to retrofit RC columns. The applications mainly focus on various substandard RC columns, but few deals with substandard columns with deteriorated concrete, especially damaged by earthquake. The purpose of this paper is to investigate the seismic behaviors of CFRP reinforced partially deteriorated RC columns and to evaluate the effect of CFRP sheets on them. Six flexure-dominant columns were tested under a constant axial load and transverse cyclic displacements. It is found that the seismic behaviors of partially deteriorated columns can be recovered by wrapping CFRP sheets on them. Numerical analysis is then conducted using finite element methods and verified with experimental results. The effects of the axial load ratio, the ratio of the thickness of CFRP sheet to the column diameter, and the slenderness ratio on the seismic behaviors of CFRP reinforced RC columns are evaluated. Finally, a method is proposed to determine the required thickness of CFRP sheet.

Comparison of Turkish Steel Building Specifications, TS 648 and SDCCSS 2018

  • Bozkurt, Mehmet Bakir;Ergut, Abdulkerim;Ozkilic, Yasin Onuralp
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.513-533
    • /
    • 2022
  • This study presents similarities and differences between Turkish Building Code for Steel Structures, which are TS 648 and SDCCSS (Specification for Design, Calculation and Construction of Steel Structures) in terms of the design of the members. Hot-rolled I-shaped steel sections for symmetrical and U-shaped steel sections (i.e., channels) for monosymmetric sections were elaborated in detail. The design strength of tension members under tensile load, compression members under axial load and flexural members under flexure and shear were examined separately. Connection details for tension members, slenderness for compression members and distance between lateral supports for flexural members were considered as prime variables. Analysis results revealed the design strength of the tension members where at least one of the cross-sectional parts is not connected to the connection plates, I-shaped compression members where a slenderness ratio is below 39 (𝛌<39), U-shaped compression members and flexural members where Lb is between Lp and Lr (Lpb≤Lr) designed based on TS 648 are greater than those designed based on SDCCSS 2018. Strength differences between the specification can reach 79% for tensile members, 13% for compression members and 9% for flexural members.