• Title/Summary/Keyword: Flexure Reinforcement

Search Result 117, Processing Time 0.023 seconds

Strength of prestressed concrete beams in torsion

  • Karayannis, Chris G.;Chalioris, Constantin E.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.2
    • /
    • pp.165-180
    • /
    • 2000
  • An analytical model with tension softening for the prediction of the capacity of prestressed concrete beams under pure torsion and under torsion combined with shear and flexure is introduced. The proposed approach employs bilinear stress-strain relationship with post cracking tension softening branch for the concrete in tension and special failure criteria for biaxial stress states. Further, for the solution of the governing equations a special numerical scheme is adopted which can be applied to elements with practically any cross-section since it utilizes a numerical mapping. The proposed method is mainly applied to plain prestressed concrete elements, but is also applicable to prestressed concrete beams with light transverse reinforcement. The aim of the present work is twofold; first, the validation of the approach by comparison between experimental results and analytical predictions and second, a parametrical study of the influence of concentric and eccentric prestressing on the torsional capacity of concrete elements and the interaction between torsion and shear for various levels of prestressing. The results of this investigation presented in the form of interaction curves, are compared to experimental results and code provisions.

A Study on the Flexural Performance of Steel Fiber-Reinforced Beams lightly Reinforced Below the Minimum Steel Reinforcement (최소철근량 이하로 보강된 강섬유보강 보의 휨성능 고찰)

  • Kang, Duk-Man;Park, Yong-Gul;Moon, Do-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.35-44
    • /
    • 2017
  • In this study, steel fiber-reinforced concrete beams with ordinary steel reinforcements, that are below minimum steel reinforcement amount specified in domestic concrete structure design code, were tested in flexure until failure. Steel reinforcement ratio considered were 44%, 66%, 78% and 100% of the minimum steel reinforcement. Considered steel fiber volume fractions were 0.25%, 0.50%, 0.75% and 1.00%. In results, it is confirmed that steel fibers greatly improve crack performance. Also, the steel fibers contributed to increment in yield load not in ultimate load. But the increment was not greater than the reduction by steel reinforcement reduction. The use of steel fibers in RC beams lightly reinforced below the minimum reinforcement ratio specified design code reduced ductility greatly. Consequently, steel reinforcement ratio in steel fiber-reinforced beams lightly reinforced below the minimum steel reinforcement should be increased in order to enhance proper ductility.

Dynamic Characteristic Study of Hingeless Blade Stiffness Reinforcement for Bearingless Rotor Whirl Tower Test (무베어링 로터 훨타워 시험을 위한 무힌지 블레이드 강성보강에 따른 동특성 연구)

  • Kim, Taejoo;Yun, Chulyong;Kee, Youngjoong;Kim, Seung-Ho;Jung, Sungnam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.105-111
    • /
    • 2013
  • Whirl tower test is conducted basically during helicopter rotor system development process. And for whirl tower test of rotor hub system, new design blade or existing blade which is remodeled for new rotor hub system is used. Because of simple shape and efficient aerodynamic characteristic, BO-105 helicopter blade is used for helicopter rotor hub development project widely. Originally BO-105 blade is used for hingeless hub system and blade root is used to flexure. So flap stiffness and lag stiffness at blade root area is relatively low compare with airfoil area. So, in order to apply the BO-105 blade to bearingless hub, blade root area have to be reinforced. And in this process, blade root area's section property is changed. In this paper, we suggest reinforcement method of BO-105 blade root area and study dynamic characteristic of bearingless rotor system with reinforcement BO-105 blade.

Strength of Interior Post-Tensioned Flat Plate Slab-Column Connection based on Failure Mechanism (파괴 메커니즘을 고려한 내부 포스트텐션 플랫 플레이트 슬래브-기둥 접합부의 강도식 평가)

  • Kim, Min-Nam;Ha, Sang-Su;Lee, Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.126-129
    • /
    • 2006
  • A bending moment $M_u$ transferred at slab-column connection is resisted at the slab critical section by flexure and shear. The ACI 318-05 Building Code(1) gives an empirical equation for the fraction ${\gamma}_{\upsilon}$ of the moment $M_u$ to be transferred by shear at the slab critical section at d/2 from the column face and also the effective wide(c+3h). The equation is based on tests of interior slab-column connections without shear reinforcement. In order to investigate the data eight test specimens were examined. The test shows that increased slab load substantially reduces both the unbalanced moment capacity and the lateral drift capacity of the connection. Especially, the specimens with the bottom reinforcement existence and nonexistence, appears remarkable differences. Studies also show that the code equation for ${\gamma}_{\upsilon}$ does not apply to all cases. The purpose of this study is to compare the test results with present ACI 318-05 Building Code provisions for design of slab-column connections and with the analysis of the experimental data for a new limitation of strength equation without shear reinforcement and bottom reinforcement.

  • PDF

Parametric studies on punching shear behavior of RC flat slabs without shear reinforcement

  • Elsamak, Galal;Fayed, Sabry
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.355-367
    • /
    • 2020
  • This paper proposed a numerical investigation based on finite elements analysis (FEA) in order to study the punching shear behavior of reinforced concrete (RC) flat slabs using ABAQUS and SAP2000 programs. Firstly, the concrete and the steel reinforcements were modeled by hexahedral 3D solid and linear elements respectively, and the nonlinearity of the used materials was considered. In order to validate this model, experimental results considered in literature were compared with the proposed FE model. After validation, a parametric study was performed. The parameters include the slab thickness, the flexure reinforcement ratios and the axial membrane loads. Then, to reduce the time of FEA, a simplified modelling using 3D layered shell element and shear hinge concept was also induced. The effect of the footings settlement was studied using the proposed simplified nonlinear model as a case study. Results of numerical models showed that increase of the slab thickness by 185.7% enhanced the ultimate load by 439.1%, accompanied with a brittle punching failure. The punching failure occurred in one of the tested specimens when the tensile reinforcement ratio increased more than 0.65% and the punching capacity improved with increasing the horizontal flexural reinforcement; it decreased by 30% with the settlement of the outer footings.

Analysis of Slender RC Short Beams(a/d<2.5) with Vertical Stirrups using Nonlinear FEM (비선형유한요소해석을 이용한 수직 스터럽이 있는 RC 짧은 보의 해석)

  • Jeong, Jae-Pyong;Kim, Dae-Joong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.259-264
    • /
    • 2002
  • This paper describes an attempt to develop a unified design approach for reinforced concrete short beam failing in shear based on a Arch Factor. Designing for short beam in shear is not as straightforward as designing for flexure due to the complicated interdependency of the variables involved and to the nonexistence of a rational theory tn current design code. Shear failure of reinforced concrete beams with stirrups is influenced greatly because of the actual geometrical shape(a/d) of the concrete and flexural reinforcement steel ratio, stirrup reinforcement ratio and concrete compression strength, size effect etc. The objective of this paper is to present a pilot study to develop a simplified physical model for estimating shear behavior of reinforced concrete short beams. The Key idea incorporated with this model is the Arch factor, introduced by Kim and White.

  • PDF

Behavior, Design, and Modeling of Structural Walls and Coupling Beams - Lessons from Recent Laboratory Tests and Earthquakes

  • Wallace, John W.
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.1
    • /
    • pp.3-18
    • /
    • 2012
  • Observed wall damage in recent earthquakes in Chile and New Zealand, where modern building codes exist, exceeded expectations. In these earthquakes, structural wall damage included boundary crushing, reinforcement fracture, and global wall buckling. Recent laboratory tests also have demonstrated inadequate performance in some cases, indicating a need to review code provisions, identify shortcomings and make necessary revisions. Current modeling approaches used for slender structural walls adequately capture nonlinear flexural behavior; however, strength loss due to buckling of reinforcement and nonlinear and shear-flexure interaction are not adequately captured. Additional research is needed to address these issues. Recent tests of reinforced concrete coupling beams indicate that diagonally-reinforced beams detailed according to ACI 318-$11^1$ can sustain plastic rotations of about 6% prior to significant strength loss and that relatively simple modeling approaches in commercially available computer programs are capable of capturing the observed responses. Tests of conventionally-reinforced beams indicate less energy dissipation capacity and strength loss at approximately 4% rotation.

An Experimental Study on the Inelastic Rotation Capacity of Reinforced Concrete Beams with Lateral Reinforcement (횡방향보강근을 갖는 철근콘크리트보의 비탄성 회정능력에 관한 실험적 연구)

  • 연규원;이주나;강민철;윤정민;박찬수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.433-439
    • /
    • 2000
  • Reinforced concrete beams show increased ductile behavior when the compressive concrete is confined with transverse steel. In the inelastic range, the most variations of ductile behaviour are defined the equivalent length of the plastic hinge and the plastic hinge rotation. In an investigation to study the influence of such confinement, sixteen reinforced concrete beams were tested in flexure and the deflections noted at all stages of loading. For all the beams tested, the plastic hinge rotation have been computed and the effect of confinement on the same examined. The conclusions are summarized as follows: The equivalent lengths of the plastic hinge are ranged within the effective depth comparatively. The ability of the plastic hinge rotation of the reinforced concrete beams confined with transverse steel are enlarged when transverse reinforcement content are increased, but the spaces are more important as the shear force are largely increased.

  • PDF

Flexural Strengthening Effect of Carbon Fiber Sheet Considering Different Status of Damages in RC Beams (RC 보의 손상 상태를 고려한 탄소섬유시트의 휨보강 효과)

  • Park, Sung-Soo;Jo, Su-Je
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.157-167
    • /
    • 2002
  • In most cases, quantity of reinforcement is determined without regard to the difference of initial strain, and status of damages when calculated the strengthening in flexure at beams. Thus, the purpose of this study is to investigate the flexural strengthening efficiency and behavior of RC beams strengthened with carbon fiber sheets(CFS) considering different status of damages. in this paper, a nonlinear analysis program considering rip-off strength and residual stress of steel bars and concrete in different status of damages is developed to predict the flexural behavior of CFS strengthened beams. Rip-off strength equation is obtained by modifying moment of inertia in the Robert's equation. And conformed developed nonlinear analysis program in variable of strengthening CFS amount and status of damages(initial, case1, case2, case3) and tension reinforcement ratio(0.2~1.0%).

Verification and Mitigation of Seismic Failure in Concrete Piers under Near-field Earthquakes

  • Ikeda, Shoji;Hayashi, Kazuhiko;Naganuma, Toshihiko
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.1-11
    • /
    • 2007
  • This paper verifies the difference of the seismic behavior and seismic damage of the neighboring two reinforced concrete piers damaged by the 1995 Hyogoken Nanbu earthquake. The two piers were almost the same size, carrying slightly different dead load, and were provided with the same reinforcement arrangement except the amount of longitudinal reinforcement at the bottom portion of the piers. The pier with more reinforcement was completely collapsed due to this near field earthquake by shear failure at the longitudinal reinforcement cut-off while the other was only damaged at the bottom by flexure even though the longitudinal reinforcement cut-off was also existed at the mid height of the pier. According to the results of the pseudo dynamic test, the seismic damage was recognized to be greatly dependent on the ground motion characteristics even though the employed ground motions had the same peak acceleration. The severe damage was observed when the test employed the seismic wave that had strong influence to the longer period range compared to the initial natural period of the pier. On the other hand, based on the similar model experiment, the defect of gas-pressure welded splice of longitudinal reinforcement was revealed to save the piers against collapse due to the so-called fail-safe mechanism contrary to the intuitive opinion of some researchers. It was concluded that the primary cause of the collapse of the pier was the extremely strong intensity and peculiar characteristics of the earthquake motion according to both the site-specific and the structure-specific effects.