• Title/Summary/Keyword: Flexural strain

Search Result 536, Processing Time 0.028 seconds

Deflection Analysis of Flexural Composite Members Considering Early-Age Concrete Properties (콘크리트의 초기재령특성을 고려한 합성형 휨 부재의 재령종속적 처짐해석)

  • 성원진;김정현;윤성욱;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.427-432
    • /
    • 2003
  • An analytical method to predict the flexural behavior of composite girder is presented in which the early-age properties of concrete are specified including maturing of elastic modulus, creep and shrinkage. The time dependent constitutive relation accounting for the early-age concrete properties is derived in an incremental format by expanding the total form of stress-strain relation by the first order Taylor series with respect to the reference time. The sectional analysis calculates the axial and curvature strains based on the force and moment equilibriums. The deflection curve of the box girder approximated by the quadratic polynomial function is calculated by applying to the proper boundary conditions in the consecutive segments. Numerical applications are made for the 3-span double composite steel box girders which is a composite bridge girder filled with concrete at the bottom of the steel box in the negative moment region. The one dimensional finite element analysis results are compared with those of the three dimensional finite element analysis and the analytical method based on the sectional analysis. Close agreement is observed among the three methods.

  • PDF

Numerical Simulation of Rehabilitated Flexural RC Member using High Performance Composite (균열제어 기능성 복합재료를 이용한 RC 휨 부재 보강수치해석)

  • 신승교;김태균;임윤묵
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.543-548
    • /
    • 2003
  • In this study, a numerical model is developed using axial deformation link elements that can effectively predict the failure behavior of RC type structures. Using this mod 1, numerical analysis was performed to investigate the strengthening effect and failure behavior of structures repaired with a new material. High-Performance Cementitious Composites, which is characterized by its ductility with 5% strain-capacity is used as a repair material. To investigate the validity of developed numerical model, simulations of direct tension specimen and flexural specimen are performed and the results are compared with published ones. The similar analysis is performed for RC beam. Through this study, it is seen that predicted response has a good agreement with the experimental results. Using this verified numerical model, the strengthening effect of repaired with HPCC structure is analyzed through load-displacement curve and failure modes. Also, the same numerical analysis is performed in RC beam repaired with HPCC. The effect of HPCC ductility is estimated for the overall behavior of structures. Based on the results, the fundamental data are suggested for repaired structures with HPCC.

  • PDF

Behavior of Engineered Cementitious Composite(ECC) Flexural Members Based on Mix Proportions and Curing Conditions (고기능성 시멘트계 복합재료 배합비 및 양생조건에 따른 휨부재의 거동)

  • 경민수;김동완;배병원;전경숙;임윤묵;김장호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.361-366
    • /
    • 2003
  • Recently, construction materials have been guickly advancing. Especially, the rate of development of cement based construction materials is much quicker than steel or composite materials. In order to optimize the ductility and strength of cement based materials, Micro-Mechanics based fiber concrete called Engineered Cement Composite (ECC) has been developed and studied extensively by many researchers in the field due to ECC's remarkable flexural strain and strength capacities, many leading nation (i.e., US, Japan and European countries have reached the point of being able to use ECC in actual constructions. But, due to the belated interest in the field, Korea is lagging behind the leading countries. ECC's ability to use its short fibers to bridge micro-cracks (50-80㎛ in width) allows great ductility and strength. ,In this study, ECC with superior material capacities are manufactured using domestic materials such as cement, silica sand, metal cellulose, etc. Using only domestic products, the optimal W/C ratio and mixing procedures are determined.

  • PDF

Mechanical Properties Anisotropy of Plain Weave Glass Fabric Reinforced Epoxy Resin Laminates (평직유리섬유강화 에폭시 적층판의 기계적 특성 이방성)

  • Kim, Yon-Jig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.15-21
    • /
    • 2009
  • The anisotropic mechanical properties were measured for the three orthogonal orientations of plain weave glass fabric reinforced epoxy resin laminate. In tensile and flexural tests, axial and edge type specimens failed by pull-out of warp and fill yarns, respectively. In contrast, the thickness type specimens failed by adhesive failure process. Longitudinal cracking occurred in several of the edge type specimens during tensile test. That cracking caused pop-in in the stress-strain curve. Defects induced by improper coupon machining caused that cracking.

An Experimental Study on Shear Behavior of High Strength Reinforced Concrete Beams using Input Steel Fiber (강섬유을 혼입한 고강도 철근콘크리트 보의 전단거동에 관한 실험적 연구)

  • 석인수;박종건;곽계환
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.277-282
    • /
    • 1999
  • Recently , the use of steel fibers has been increased in flexural members and beams of concrete structures ; such as bridge decks, highway roads, runway of airport , buildings , ete.. An experimental investigation of the shear behavior of high-strength reinforced concrete beams using input steel fiber was conducted. However only a few experimental tests have been carried out under static loading . The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking , crack patters, fracture modes. The load versus strain and load versus deflection relation were obtained from the static test.

  • PDF

Flexural and shear behaviour of profiled double skin composite elements

  • Anwar Hossain, K.M.;Wright, H.D.
    • Steel and Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.113-132
    • /
    • 2004
  • Double skin composite element (DSCE) is a novel form of construction comprising two skins of profiled steel sheeting with an infill of concrete. DSCEs are thought to be applicable as shear or core walls in a building where they can resist in-plane loads. In this paper, the behaviour of DSCE subjected to combined bending and shear deformation is described. Small-scale model tests on DSCEs manufactured from micro-concrete and very thin sheeting were conducted to investigate the flexural and shear behaviour along with analytical analysis. The model tests provided information on the strength, stiffness, strain conditions and failure modes of DSCEs. Detailed development of analytical models for strength and stiffness and their performance validation by model tests are presented.

Assessing Effects of Fine Aggregate Size on the Mechanical Properties of HPFRCCs Reinforced with PVA Fiber (PVA 섬유로 보강된 고인성 시멘트 복합체의 역학적 특성에 대한 잔골재 치수의 영향 평가)

  • Lee, Won-Suk;Byun, Jang-Bae;Yun, Hyun-Do;Jeon, Esther
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.657-660
    • /
    • 2006
  • HPFRCCs(High performance fiber reinforced cementitious composites) exhibit characteristics of strain harding and multiple crack. These lead to improvement in ductility, toughness, and deformation capacity under compressive and tensile stress. These properties of HPFRCCs are affected by type of fiber, size of sand. Furthermore these influence compress strength and flexural strength. Therefore experimental study on the mechanical properties of HPFRCCs using PVA fiber was carried out. In this paper, HPFRCCs made of PVA fiber were tested with size of sand, strength of concrete to evaluate characteristics of compressive strength and flexural strength.

  • PDF

Tension and impact behaviors of new type fiber reinforced concrete

  • Deng, Zongcai;Li, Jianhui
    • Computers and Concrete
    • /
    • v.4 no.1
    • /
    • pp.19-32
    • /
    • 2007
  • This paper is concentrated on the behaviors of five different types of fiber reinforced concrete (FRC) in uniaxial tension and flexural impact. The complete stress-strain responses in tension were acquired through a systematic experimental program. It was found that the tensile peak strains of concrete with micro polyethylene (PEF) fiber are about 18-31% higher than that of matrix concrete, those for composite with macro polypropylene fiber is 40-83% higher than that of steel fiber reinforced concrete (SFRC). The fracture energy of composites with micro-fiber is 23-67% higher than that of matrix concrete; this for macro polypropylene fiber and steel fiber FRCs are about 150-210% and 270-320% larger than that of plain concrete respectively. Micro-fiber is more effective than macro-fiber for initial crack impact resistance; however, the failure impact resistance of macro-fiber is significantly larger than that of microfiber, especially macro-polypropylene-fiber.

The Experimental Study for Inorganic Permanent Form's Performance Evaluation (무기질계 영구거푸집의 성능평가를 위한 실험적 연구)

  • 김용성;강병훈;김우재;정병훈;정재영;정상진;김광수
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.1-7
    • /
    • 2001
  • To do performance evaluations about inorganic permanent form mixed in admixture(fly ash, silica fume) and after placed concrete, it is examined reinforcement materials in the permanent form from shear strength, bond strength and flexural strength tests. In this study, permanent form was inserted with reinforcement metal fitting is strength-tested in several method. The result of this study is belows. (1) In bond strength test, Most specimens are satisfied with criterion-6 kgf/$cm^2$. (2) Irrelative with the inserted metal fitting's shape, unevenness and aggregate, Permanent form and after placed concrete have good condition in the shear strength test. (3) In flexural test, there is no drop out of permanent form. Most cracks are located in nearby the strain point.

  • PDF

Optimized Fabrication of FGMs and DIC Evaluation (FGMs의 최적화 제조와 DIC 평가)

  • Kwon, Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.5
    • /
    • pp.27-32
    • /
    • 2011
  • Recently new technological development needs the advances in the fields of new materials. The most advanced design is not useful if new material's performance is not realized adequately for bearing the service loads and conditions. FGMs suggests the reasonable solution for the those requirements because of its wide range microstructure and the continuous constitutions. It's especially good for the heat-resisting components, piezoelectricity and aerocraft fields. However the fabrication and its experimental estimation methods have not been established because of its various freedom of material's properties. Therefore it is necessary to develope the fabrication method and estimation of strength and deformation. The experiments are conducted under a four point flexural test. According to results, this study shows that FGMs is well fabricated and the deformation and strain fields are expressed very well by digital image correlation method.