• Title/Summary/Keyword: Flexural stiffness

Search Result 634, Processing Time 0.025 seconds

Flexural behavior of reinforced lightweight concrete beams under reversed cyclic loading

  • Chien, Li-Kai;Kuo, Yi-Hao;Huang, Chung-Ho;Chen, How-Ji;Cheng, Ping-Hu
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.559-572
    • /
    • 2014
  • This paper presents the results of an experimental investigation on the flexural behavior of doubly reinforced lightweight concrete (R.L.C.) beams tested under cyclic loading. A total of 20 beam specimens were tested. Test results are presented in terms of ductility index, the degradation of strength and stiffness, and energy dissipation. The flexural properties of R.L.C. beam were compared to those of normal concrete (R.C.) beams. Test results show that R.L.C. beam with low and medium concrete strength (20, 40MPa) performed displacement ductility similar to the R.C. beam. The ductility can be improved by enhancing the concrete strength or decreasing the tension reinforcement ratio. Using lightweight aggregate in concrete is advantageous to the dynamic stiffness of R.L.C. beam. Enhancement of concrete strength and increase of reinforcement ratio will lead to increase of the stiffness degradation of beam. The energy dissipation of R.L.C beam, similar to R.C. beam, increase with the increase of tension reinforcement ratio. The energy dissipation of unit load cycle for smaller tension reinforcement ratio is relatively less than that of beam with higher reinforcement ratio.

Exploring Reliability of Wood-Plastic Composites: Stiffness and Flexural Strengths

  • Perhac, Diane G.;Young, Timothy M.;Guess, Frank M.;Leon, Ramon V.
    • International Journal of Reliability and Applications
    • /
    • v.8 no.2
    • /
    • pp.153-173
    • /
    • 2007
  • Wood-plastic composites (WPC) are gaining market share in the building industry because of durability/maintenance advantages of WPC over traditional wood products and because of the removal of chromated copper arsenate (CCA) pressure-treated wood from the market. In order to ensure continued market share growth, WPC manufacturers need greater focus on reliability, quality, and cost. The reliability methods outlined in this paper can be used to improve the quality of WPC and lower manufacturing costs by reducing raw material inputs and minimizing WPC waste. Statistical methods are described for analyzing stiffness (tangent modulus of elasticity: MOE) and flexural strength (modulus of rupture: MOR) test results on sampled WPC panels. Descriptive statistics, graphs, and reliability plots from these test data are presented and interpreted. Sources of variability in the MOE and MOR of WPC are suggested. The methods outlined may directly benefit WPC manufacturers through a better understanding of strength and stiffness measures, which can lead to process improvements and, ultimately, a superior WPC product with improved reliability, thereby creating greater customer satisfaction.

  • PDF

Assessment of the Ultimate Load-Carrying Capacity of RC Beams (RC보의 극한 내하력 평가)

  • Youn, Seok-Goo;Kim, Eun-Kyum;Seol, Dae-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.331-334
    • /
    • 2005
  • Three RC beams are fabricated and tested to assess the ultimate load-carrying capacity. Depending on the crackings, the flexural stiffness of the RC beams are changed. However, these variations of the flexural stiffness do not influenced on the ultimate load-carrying capacity of the tested beams. Based on the behaviors of RC beams, the validation of the current assessment codes to discussed.

  • PDF

Equivalent moment of inertia of a truss bridge with steel-concrete composite deck

  • Siekierski, Wojciech
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.801-813
    • /
    • 2015
  • Flexural stiffness of bridge spans has become even more important parameter since Eurocode 1 introduced for railway bridges the serviceability limit state of resonance. For simply supported bridge spans it relies, in general, on accurate assessment of span moment of inertia that governs span flexural stiffness. The paper presents three methods of estimation of the equivalent moment of inertia for such spans: experimental, analytical and numerical. Test loading of the twin truss bridge spans and test results are presented. Recorded displacements and the method of least squares are used to find an "experimental" moment of inertia. Then it is computed according to the analytical method that accounts for joint action of truss girders and composite deck as well as limited span shear stiffness provided by diagonal bracing. Finally a 3D model of finite element method is created to assess the moment of inertia. Discussion of results is given. The comparative analysis proves efficiency of the analytical method.

Exact dynamic stiffness matrix for a thin-walled beam-column of doubly asymmetric cross-section

  • Shirmohammadzade, A.;Rafezy, B.;Howson, W.P.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.195-210
    • /
    • 2011
  • Bernoulli-Euler beam theory is used to develop an exact dynamic stiffness matrix for the flexural-torsional coupled motion of a three-dimensional, axially loaded, thin-walled beam of doubly asymmetric cross-section. This is achieved through solution of the differential equations governing the motion of the beam including warping stiffness. The uniform distribution of mass in the member is also accounted for exactly, thus necessitating the solution of a transcendental eigenvalue problem. This is accomplished using the Wittrick-Williams algorithm. Finally, examples are given to confirm the accuracy of the theory presented, together with an assessment of the effects of axial load and loading eccentricity.

Longitudinal and Flexural Vibration Analysis of a Beam Type Structure by Transfer Stiffness Coefficient Method (전달강성계수법에 의한 보형구조물의 종.굽힘진동해석)

  • Moon, D.H.;Choi, M.S.;Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.2 no.1
    • /
    • pp.59-66
    • /
    • 1998
  • The authors have studied vibration analysis algorithm which was suitable to the personal computer. Recently, we presented the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficients which are related to force and displacement vectors at each node. In this paper, we describes the general formulation for the longitudinal and flexural coupled vibration analysis of a beam type structure by the TSCM. And the superiority of the TSCM to the finite element method(FEM) in the computation accuracy, cost and convenience was confirmed by results of the numerical computation and experiment.

  • PDF

Effect of Support Rotational Stiffness on Tension Estimation of Short Hanger Ropes in Suspension Bridges (현수교 짧은 행어로프의 장력추정시 지점부 회전강성의 영향)

  • Lee, Jungwhee;Ro, Sang-Kon;Lee, Young-Dai;Kang, Byung-Chan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.10
    • /
    • pp.869-877
    • /
    • 2013
  • Tension force of hanger ropes has been recognized and utilized as an important parameter for health monitoring of suspension bridges. Conventional vibration method based on string theory has been utilized to estimate tension forces of relatively long hanger ropes without any problem, however it is convinced that the vibration method is not applicable for shorter hanger ropes in which the influence of flexural stiffness is not ignorable. Therefore, as an alternative of vibration method, a number of feasibility studies of system identification(SI) technique considering flexural stiffness of the hanger ropes are recently performed. In this study, the influence of support condition of the finite element model utilized for the SI method is investigated with numerical examples. The numerical examples are prepared with the specification of the Kwang-Ahn bridge hanger ropes, and it is revealed that the estimation result of the tension force can be varied from -21.6 % to +35.3 % of the exact value according to the consideration of the support condition of FE model. Therefore, it is concluded that the rotational stiffness of the support spring should be included to the list of the identification parameters of the FE model to improve the result of tension estimation.

Three dimensional analysis of reinforced concrete frames considering the cracking effect and geometric nonlinearity

  • Kara, Ilker Fatih;Dundar, Cengiz
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.163-180
    • /
    • 2009
  • In the design of tall reinforced concrete (R/C) buildings, the serviceability stiffness criteria in terms of maximum lateral displacement and inter-story drift must be satisfied to prevent large second-order P-delta effects. To accurately assess the lateral deflection and stiffness of tall R/C structures, cracked members in these structures need to be identified and their effective member flexural stiffness determined. In addition, the implementation of the geometric nonlinearity in the analysis can be significant for an accurate prediction of lateral deflection of the structure, particularly in the case of tall R/C building under lateral loading. It can therefore be important to consider the cracking effect together with the geometric nonlinearity in the analysis in order to obtain more accurate results. In the present study, a computer program based on the iterative procedure has been developed for the three dimensional analysis of reinforced concrete frames with cracked beam and column elements. Probability-based effective stiffness model is used for the effective flexural stiffness of a cracked member. In the analysis, the geometric nonlinearity due to the interaction of axial force and bending moment and the displacements of joints are also taken into account. The analytical procedure has been demonstrated through the application of R/C frame examples in which its accuracy and efficiency in comparison with experimental and other analytical results are verified. The effectiveness of the analytical procedure is also illustrated through a practical four story R/C frame example. The iterative procedure provides equally good and consistent prediction of lateral deflection and effective flexural member stiffness. The proposed analytical procedure is efficient from the viewpoints of computational effort and convergence rate.

Flexural Strength of Dual Concrete Beams Composed of Fiber Reinforced Concrete and Normal Concrete (섬유보강 콘크리트와 보통콘크리트로 합성된 이중 콘크리트 보의 휨 강도)

  • 박대효;부준성;조백순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.579-584
    • /
    • 2001
  • The reinforced concrete(RC) beam is developed cracks because the compression strength of concrete is strong but the tensile strength is weak. The structural strength and stiffness is decreased by reduction of tension resistance capacity of concrete due to the developed cracks. Using the fiber reinforced concrete that is increased the flexural strength and tensile strength at tensile part can enhance the strength and stiffness of concrete structure and decrease the tensile flexural cracks and deflection. Therefore, The reinforced concrete used the fiber reinforced concrete at tensile part ensure the safety and serviceability of the concrete structures. In this study, analytical model of a dual concrete beam that is composed of the normal strength concrete at compression part and the high tensile strength concrete at tensile part is developed by using the equilibrium condition of forces and compatibility condition of strains and is parted into elastic analytical model and ultimate analytical model. Three group of test beam that is formed of one reinforced concrete beam and two dual concrete beams for each steel reinforcement ratio is tested to examine the flexural behavior of dual concrete beams. The comparative study of total nine test beams is shown that the ultimate load of a dual concrete beams relative to the reinforced concrete beams have an increase in approximately 30%. In addition, the initial flexural rigidity, as used here, refer to the slope of load-deflection curves in elastic state is increased and the deflection is decreased.

  • PDF

Flexural behavior of sandwich beams with novel triaxially woven fabric composite skins

  • Al-Fasih, M.Y.;Kueh, A.B.H.;Ibrahim, M.H.W.
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.299-308
    • /
    • 2020
  • This study aims to carry out the experimental and numerical investigation on the flexural behavior of sandwich honeycomb composite (SHC) beams reinforced with novel triaxially woven fabric composite skins. Different stacking sequences of the carbon fiber reinforcement polymer (CFRP) laminate; i.e., 0°-direction of TW (TW0), 0°-direction of UD (UD0), and 90°-direction of UD (UD90) were studied, from which the flexural behavior of SHC beam behaviors reinforced with TW0/UD0 or TW0/UD90 novel laminated skins were compared with those reinforced with UD0/90 conventional laminated skins under four-point loading. Generally, TW0/UD0 SHC beams displayed the same flexural stiffness as UD0/90 SHC beams in terms of load-deflection relationships. In contrast, TW0/UD90 SHC beams showed a 70% lower efficiency than those of UD0/90 SHC. Hence, the TW0/UD0 laminate arrangement is more effective with a mass reduction of 39% compared with UD0/90 for SHC beams, although their stiffness and shear strength are practically identical.