• Title/Summary/Keyword: Flexural resistance

Search Result 637, Processing Time 0.025 seconds

The Considerations on Flexural Performance of RC Beam Strengthened with Basalt Fibers (Basalt 섬유로 보강된 철근콘크리트 보의 휨 성능 고찰)

  • 심종성;문도영;박성재;박경동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.599-604
    • /
    • 2002
  • Fibers have been used to improve tile flexural performance of reinforced concrete. Therefore many different kinds of fibers have been developed and tested to reinforcing concrete. Basalt fiber is one of the recently developed materials for this purpose. Basalt fiber produced from this basalt raw material has high initial strength and durability. But, the main advantages of the basalt fiber are resistance to high operating temperatures and lower modulus and chemical resistance compared to fiberglass. Also basalt fiber may be consumed as a potential replacement for expensive carbon fibers.

  • PDF

Statistical variations in the impact resistance and mechanical properties of polypropylene fiber reinforced self-compacting concrete

  • Mastali, M.;Dalvand, A.;Fakharifar, M.
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.113-137
    • /
    • 2016
  • Extensive experimental studies on remarkable mechanical properties Polypropylene Fibre Reinforced Self-compacting Concrete (PFRSCC) have been executed, including different fibre volume fractions of Polypropylene fibers (0.25%, 0.5%, 0.75%, and 1%) and different water to cement ratios (0.21, 0.34, 0.38, and 0.41). The experimental program was carried out by using two hundred and sixteen specimens to obtain the impact resistance and mechanical properties of PFRSCC materials, considering compressive strength, splitting tensile strength, and flexural strength. Statistical and analytical studies have been mainly focused on experimental data to correlate of mechanical properties of PFRSCC materials. Statistical results revealed that compressive, splitting tensile, and flexural strengths as well as impact resistance follow the normal distribution. Moreover, to correlate mechanical properties based on acquired test results, linear and nonlinear equations were developed among mechanical properties and impact resistance of PFRSCC materials.

Mechanical Behavior and Fracture Resistance of $SCS6/Si_3N_4$ CFCCs ($SCS6/Si_3N_4$ 연속섬유강화 세라믹 복합재료의 기계적 거동 및 파괴저항평가)

  • Yoon, Yu-Sung;Kwon, Oh-Heon;Jenkins, Michael G.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.658-662
    • /
    • 2001
  • Continuous fiber ceramic composites(CPCCs) having the advantages of ceramics resistance to heat, eroson can be applied in chemical reactors and engine. CFCCs has relatively high stiffness in spite of low weight. In particular, it exhibits greatly increased toughness, which serves to decrease its inherent damage characteristics of the brittle nature of monolithic ceramics. In this wort, tensile and flexural test for SCS6 fiber/ $Si_3N_4$ matrix composites were studied. An objective of this study is to obtain the basic quantities of mechanical properties for tension and flexural test and link these to the fracture resistance behavior. Then, we showed that wok of fracture concept was useful as a method for describing fracture restance behavior of CFCCs.

  • PDF

Effect of Different Interfacial Shear Reinforcement Lengths and Types on Flexural Behavior of PC/PS-Half Slab (계면 전단 보강근 길이 및 형태 변화에 따른 PC/PS-Half Slab의 휨 거동)

  • 이차돈;이종민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.131-138
    • /
    • 2001
  • Total number of seven experimental specimens of size 4.6m$\times$2.4m are designed in full scale with due considerations given to the constructability as well as economic applications. Each specimen is made with different shapes of trusses or hooks along the interfacial surface between precast panel and topping concrete to maintain appropriate shear resistance. Structural performances in terms of strength and ductility under flexural load are examined for each specimen with different types of interfacial shear resistance reinforcements. Experimentally obtained flexural strength are also compared with those of analytical predictions. Based on experimental and analytical studies, design equations are suggested for the developed precast prestressed concrete half-slab systems.

  • PDF

The Mechanism of Shear Resistance and Deformability of Reinforced Concrete Coupling Beams (철근 콘크리트 연결보의 전단 저항 기구와 변형 능력)

  • Jang, Sang-Ki;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.50-53
    • /
    • 2006
  • An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcement and the ratio of shear rebar. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. It is expected that this model can be applied to displacement-based design methods.

  • PDF

Flexural Toughness and Fatigue Behavior of Steel Fiber Reinforced Rapid-set Cement Concrete (강섬유보강 초속경시멘트 콘크리트의 휨인성 및 피로거동)

  • Lee, Bong-Hak;Hong, Chang-Woo;Kim, Dong-Ho
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.163-172
    • /
    • 1999
  • This study is conducted on the flexural toughness and flexural fatigue test to fine the mechanical properties of steel fiber reinforced rapid-set cement concrete. Experimental investigation is examined according to fiber contents(0, 0.4, 0.7, 1.0, 1.5%), fiber aspect ratio(58, 60, 83), fiber type (hooked, crimped fiber), and cement type (normal portland & rapid-set cement). The principal results obtained through this study are as follows; toughness and fatigue resistance tend to considerably increase with fiber contents, fiber aspect ration. And hooked fiber is improved better than crimped fiber. Concrete using rapid set cement is increased strength properties compared with concrete using normal portland cement, but relative strength properties behavior and fatigue resistance show a tendency to decrease a little.

  • PDF

Fundamental Study of Polymer-modified Cement Mortar for Maintenance in Concrete Structure According to Ambient Temperature (온도에 따른 콘크리트 구조체 단면 보수용 폴리머 모르타르의 기초적 연구)

  • Seo, Jung-Pil;Kim, Jae-Won;Lee, Jung-Koo;Choi, Hun-Gug;Kang, Cheol;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.59-62
    • /
    • 2007
  • Nowadays, polymer-cement mortars are widely used in construction field(floorings and pavements, water-proofings, adhesives, repair materials, deck coverings, anti-corrosive linings) Because of excellent performance such as high tensile and flexural strength, waterproofness, excellent adhesion, good durability, improved wear and chemical resistances. This article presents the results of experimental study that investigates the effect of ambient temperature on the strength properties of polymer-modified cement mortar. Results show that when increasing the polymer proportion in mortar on different ambient temperature, the compressive strength and flexural strength are decreased, and also alkali resistance is decreased.

  • PDF

The Mechanism of Shear Resistance and Deformability for Reinforced Concrete Coupling Beams (철근 콘크리트 연결보의 하중 전달 기구와 변형 능력)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.233-240
    • /
    • 2006
  • An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcement and the ratio of shear rebar. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. It is expected that this model can be applied to displacement-based design methods.

  • PDF

Behaviours of steel-fibre-reinforced ULCC slabs subject to concentrated loading

  • Wang, Jun-Yan;Gao, Xiao-Long;Yan, Jia-Bao
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.407-416
    • /
    • 2019
  • Novel steel fibre reinforced ultra-lightweight cement composite (ULCC) with compressive strength of 87.3MPa and density of $1649kg/m^3$ was developed for the flat slabs in civil buildings. This paper investigated structural behaviours of ULCC flat slabs according to a 4-specimen test program under concentrated loading and some reported test results. The investigated governing parameters on the structural behaviours of the ULCC slabs include volume fraction of the steel fibre and the patch loading area. The test results revealed that ULCC flat slabs with and without flexure reinforcement failed in different failure mode, and an increase in volume fraction of the steel fibre and loading area led to an increase in flexural resistance for the ULCC slabs without flexural reinforcement. Based on the experiment results, the analytical models were developed and also validated. The validations showed that the analytical models developed in this paper could predict the ultimate strength of the ULCC flat slabs with and without flexure reinforcement reasonably well.

Physical, chemical, mechanical, and micromorphological characterization of dental needles

  • de Oliveira Monteiro, Marco Antonio;Antunes, Alberto Nogueira da Gama;Basting, Roberta Tarkany
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.21 no.2
    • /
    • pp.139-153
    • /
    • 2021
  • Background: In anesthetic techniques, touching bones can cause needle bending. Theoretically, a needle should support such deflection without fracturing. However, it is possible that a needle may fracture depending on the quality and type of needle used. This study evaluated the physical, chemical, and micromorphological characteristics of long and short dental anesthetic needles, as well as the mechanical properties of flexural load and bending resistance when needles are subjected to different bending angles. Methods: Long and short needles (30G, Jets, Misawa, Selekto, Terumo, Unoject and 27G, Dencojet, Injex, Jets, Misawa, Procare, Setoject XL, Terumo) were evaluated. Scanning electron microscopy was used to evaluate the needle bevels and energy-dispersive X-ray spectroscopy was used for the chemical analysis of needle compositions. Flexural loading and bending strength assessments were performed using a universal testing machine by bending the needles (n = 5) to angles of 30°, 60°, or 90°, or until fracture occurred. Results: The Injex 27G, Jets 27G, and Septoject XL 27G needles were all less than 30 mm in length. There were small percentage variations in the chemical compositions of the needles. Superior smoothness was observed for the Unoject 30G needle, which exhibited the highest fracture resistance at 60°. The Jets 30G needle exhibited greater resistance to fractures at 90°. The Procare 27G needle exhibited the highest load resistance to bending, followed by the Septoject XL 27G needle, and both needles were tied for the lowest fracture resistance. No needle fractured when bent to 30° or at less than three bends to 60° or 90°. Conclusions: Greater needle resistance to bending increases the probability of early fracturing. Thinner and shorter needles are more resistant than longer and thicker needles. Performing a single bend does not result in any significant risk of fracture or obliterate the lumen, allowing for the continued passage of anesthetic liquid.