• 제목/요약/키워드: Flexural resistance

검색결과 637건 처리시간 0.029초

폴리올레핀계 구조용 합성섬유보강 콘크리트의 휨성능 및 화재 저항성 (Flexural Performance and Fire Resistance of Polyolefin Based Structural Synthetic Fiber Reinforced Concrete)

  • 박찬기;원종필
    • 한국농공학회논문집
    • /
    • 제50권1호
    • /
    • pp.49-57
    • /
    • 2008
  • This study evaluated the flexural properties and fire resistance of polyolefm based structural synthetic fiber reinforced concrete. The effects of differing fiber length, dimension and fiber volume fraction were studied. Flexural and fire resistance test were conducted in accordance with the JCI SF-4 and RABT time heating temperature curve, respectively. The Flexural test results indicated that the polyolefln based structural fiber reinforcement showed an ability to increase the flexural toughness and good fire resistance significantly(as compared to steel fiber reinforcement).

Analytical model for flexural and shear strength of normal and high-strength concrete beams

  • Campione, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • 제78권2호
    • /
    • pp.199-207
    • /
    • 2021
  • In the present paper, an analytical model is proposed to determine the flexural and shear strength of normal and high-strength reinforced concrete beams with longitudinal bars, in the presence of transverse stirrups. The model is based on evaluation of the resistance contribution due to beam and arch actions including interaction with stirrups. For the resistance contribution of the main bars in tension the residual bond adherence of steel bars, including the effect of stirrups and the crack spacing of R.C. beams, is considered. The compressive strength of the compressed arch is also verified by taking into account the biaxial state of stresses. The model was verified on the basis of experimental data available in the literature and it is able to include the following variables in the resistance provision: - geometrical percentage of steel bars; - depth-to-shear span ratio; - resistance of materials; - crack spacing; - tensile stress in main bars; - residual bond resistance including the presence of stirrups;- size effects. Finally, some of the more recent analytical expressions able to predict shear and flexural resistance of concrete beams are mentioned and a comparison is made with experimental data.

재생수지콘크리트의 역학적 성질에 관한 연구 (Mechanical Properties of Reclaimed Plastic Concrete)

  • 전진영;고재군
    • 한국농공학회지
    • /
    • 제29권4호
    • /
    • pp.132-141
    • /
    • 1987
  • The objective of the study was to obtain the compressive the tensile and the fleniril strengthes, thermal resistance, chemical resistance and fire resistance of the reclaimed plastic corcrete in order to investigate the feasibility as a new construction material This reclaimed plastic concrete is a compositive material which is composed of sand and blend of 50% of LDPE(Low density polyethylene) and 50% of HDPE (High density polyethylene) which are inexpensive and easy to reclaim. The results obtained in the study are summarized as follows: 1. As the binder content ranging from 20 to 40 % increase, the compresie, the splitting tensile and the flexural strengthes were increased. The compressive strenzth of the specimen tested was the highest and flexural strength the next and tensile strength the lowest 2. The compressive, the tensile and flexural strengthes of specimens made of fine sand were higher than those of coarse sand. The compressive, the tensile and the flexural strengthes of specimens made of high pressure molding were higher than those of low pressure molding. 3.In comparison with different additives, the specimens with carbon black was excellent and B. H. T. good and ferric oxide poor for thermal resistance. 4. In relationship between the flexural strength with varying temperature from -23$^{\circ}C$ to 80$^{\circ}C$. The flexural strengthes were decreared as temperature increased at 25 %, 30 % and 35 % of binder contents, respectively. Especially at 60$^{\circ}C$, the flexural strength was significantly decreased. 5. The decrement of flexural strengthes and the weight losses after 7 days immersion in acid or alkali solutions were not significant. 6. Fire resistance of the reclaimed plastic concrete was not significantly influenced by the contents of sand. However, the fire resistance of the reclaimed plastic concrete was depend upon melting and ignition properties of the binder itself. Therefore. a proper selection of the binder and the fire retardant are recommended in arder to improve fire resistance of the reclaimed plastic concrete.

  • PDF

Mechanical Behavior and Numerical Estimation of Fracture Resistance of a SCS6 Fiber Reinforced Reaction Bonded Si$_3$N$_4$ Continuous Fiber Ceramic Composite

  • Kwon, Oh-Heon;Michael G. Jenkins
    • Journal of Mechanical Science and Technology
    • /
    • 제16권9호
    • /
    • pp.1093-1101
    • /
    • 2002
  • Continuous fiber ceramic composites (CFCCs) have advantages over monolithic ceramics : Silicon Nitride composites are not well used for application because of their low fracture toughness and fracture strength, but CFCCs exhibit increased toughness for damage tolerance, and relatively high stiffness in spite of low specific weight. Thus it is important to characterize the fracture resistance and properties of new CFCCs materials. Tensile and flexural tests were carried out for mechanical properties and the fracture resistance behavior of a SCS6 fiber reinforced Si$_3$N$_4$ matrix CFCC was evaluated. The results indicated that CFCC composite exhibit a rising R curve behavior in flexural test. The fracture toughness was about 4.8 MPa$.$m$\^$1/2 , which resulted in a higher value of the fracture toughness because of fiber bridging. Mechanical properties as like the elastic modulus, proportional limit and the ultimate strength in a flexural test are greater than those in a tensile test. Also a numerical modeling of failure process was accomplished for a flexural test. This numerical results provided a good simulation of the cumulative fracture process of the fiber and matrix in CFCCs.

Review of Design Flexural Strengths of Steel-Concrete Composite Beams for Building Structures

  • Chung, Lan;Lim, Jong-Jin;Hwang, Hyeon-Jong;Eom, Tae-Sung
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권sup3호
    • /
    • pp.109-121
    • /
    • 2016
  • Recently, as the use of high-performance materials and complex composite methods has increased, the need for advanced design specifications for steel-concrete composite structures has grown. In this study, various design provisions for ultimate flexural strengths of composite beams were reviewed. Design provisions reviewed included the load and resistance factor design method of AISC 360-10 and the partial factor methods of KSSC-KCI, Eurocode 4 and JSCE 2009. The design moment strengths of composite beams were calculated according to each design specification and the variation of the calculated strengths with design variables was investigated. Furthermore, the relationships between the deformation capacity and resistance factor for flexure were examined quantitatively. Results showed that the design strength and resistance factor for flexure of composite beams were substantially affected by the design formats and variables.

현장인발시험을 통한 섬유형 쏘일네일의 거동특성 평가 (Evaluation of Behavior Characteristics of Geosynthetic Fiber Nail System from the Field Pull-Out Tests)

  • 김홍택;박시삼;조병국;정성필
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.342-347
    • /
    • 2004
  • Excavation nearby the existing structures is being performed vigorously to get the greatest use of land along with fast economic growth in the downtown area. The application of soil nailing system gradually increases because of an advantage of soil nailing system adjacently constructed in the existing structures. In this study, friction resistance by pull-out is considered as main resistance except resistance formed by flexural rigidity of nail observing that resistance of flexural rigidity is about $0{\sim}15\;%$ of whole safety factor according to degree of flexural rigidity in general soil nail wall and application of geosynthetic fiber soil nailing system is evaluated through laboratory tensile strength test and field pull-out test.

  • PDF

다발형 폴리아미드섬유 보강 콘크리트의 휨거동에 관한 실험적 연구 (A Experimental Study on the Flexural Behavior of Bundle Type Polyamide Fiber Reinforced Concrete)

  • Jeon, Chan Ki;Jeon, Joong Kyu
    • 한국재난정보학회 논문집
    • /
    • 제10권1호
    • /
    • pp.61-70
    • /
    • 2014
  • 일반적으로 건설재료 용도로 많이 사용되고 있는 유기섬유 보강 콘크리트는 섬유 자체의 인장강도 및 탄성계수는 낮지만, 휨거동, 균열에 대한 저항성 및 충격저항성 등의 특성은 우수하며, 내화학성이 뛰어나고 부식의 우려가 없는 것으로 널리 알려져 있다. 최근 해외에서는 유기섬유 보강재를 터널 숏크리트와 프리캐스트 세그먼트 라이닝, 교량 슬래브 및 PC제품 분야에서 일부 활용되고 있으며, 그 종류 또한 다양하다. 본 연구에서는 다발형 폴리아미드섬유를 혼입한 콘크리트의 휨거동 특성을 ASTM C 1609 및 KS F 2566에 준하여 하중-처짐 관계를 도출하여 유기섬유 보강 콘크리트의 적용 가능성을 검토하였다.

하이브리드 유기섬유 보강 콘크리트의 제조 및 휨성능 평가 (A Processing and Flexural Performance Evaluation of Hybrid Organic Fiber Reinforced Concrete)

  • Jeon, Chanki;Jeon, Joongkyu;Shim, Jaeyeong
    • 한국재난정보학회 논문집
    • /
    • 제13권2호
    • /
    • pp.213-220
    • /
    • 2017
  • 일반적으로 유기섬유는 섬유 자체의 인장강도 및 탄성계수는 작지만, 내화성 및 내부식성이 우수하고, 콘크리트의 균열 제어 및 내충격 성능 향상에 효과적인 섬유이다. 따라서, 유기섬유는 콘크리트용 보강 섬유로서의 적용성이 매우 높은 재료이다. 본 연구에서는 폴리아미드(PA)섬유와 고강력의 폴리에스터(PET)섬유를 혼입한 하이브리드 유기섬유를 개발하였으며, 하이브리드 유기섬유를 혼입한 섬유보강 콘크리트의 휨성능 시험을 통해 하이브리드 유기섬유 보강 콘크리트의 에너지 흡수능력을 평가하고자 한다.

수평보강재로 보강된 세장복부판을 갖는 플레이트거더의 휨강도 평가 실험 (Experiments on Flexural Resistance of Longitudinally Stiffened Plate Girder with Slender Web)

  • 박용명;이건준;주호중;조성훈
    • 한국강구조학회 논문집
    • /
    • 제26권6호
    • /
    • pp.595-604
    • /
    • 2014
  • 본 연구에서는 수평보강재로 보강된 세장복부판을 갖는 플레이트거더의 휨강도 평가를 위한 실험을 수행하였다. 이를 위해 복부판세장비가 219와 156이며 수평보강재가 없는 경우와 설치한 경우의 총 4개 거더를 제작하였다. 실험으로부터 구해진 휨강도를 현행 AASHTO LRFD 기준과 Eurocode 3 기준과 비교하였다. 이로부터 AASHTO LRFD 기준은 저자들이 발표한 선행 논문에서 제시한 바와 같이 수평보강 거더의 휨강도를 크게 저평가하는 것이 입증되었으며, 선행 논문에서 제안한 휨강도 평가 방법은 보강 거더의 휨강도를 합리적으로 평가할 수 있음이 입증되었다.

섬유길이에 따른 비정질 강섬유 보강 시멘트 복합체의 충격파괴특성 (Impact Fracture Properties of Amorphous Metallic Fiber Reinforced Cementitious Composite by Fiber Length)

  • 이상규;김규용;황의철;손민재;편수정;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.65-66
    • /
    • 2019
  • In this study, flexural strength and impact resistance were evaluated to investigate the fiber length effect of amorphous metallic fiber. As a result, in the case of 30AFRCC, cutoff behavior due to excellent bonding performance by large specific surface area has greatly influence on the flexural and impact resistance performance. In the case of 15AFRCC, the bonding efficiency is relatively low, because the specific surface area is smaller than that of 30AFRCC and the number of fiber is large, so the effect of improving the flexural and impact resistance performance is smaller than that of 30AFRCC.

  • PDF