• Title/Summary/Keyword: Flexural members

Search Result 520, Processing Time 0.027 seconds

Nonlinear Analysis of Reinforced Concrete Flexural Members under Cyclic Loading (반복하중을 받는 철근콘크리트 휨부재의 비선형해석)

  • 변근주;김영진
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.3
    • /
    • pp.149-157
    • /
    • 1991
  • This paper concentrates on the nonlinear analysis of the reinforced concrete flexural members under cyclic loading. To develop a nonlinear material model, concrete is treated as an orthotropic nonlinear material and steel is modeled as an elasto-plastic material. The models for hysteresis behavior with stiffness degradation in compression and for crack opening and closing in tension are included. The finite element computer program for the nonlinear analysis of RC flexural members under cyclic loading is developed. The accuracy and reliabihty of the numerical procedure IS demonstrated by the FEM analysis and test results of underreinforced concrete beams.

Flexural Strength Evaluation of RC Members Laminated by Carbon Fiber Sheet

  • Park, Hae-Geun
    • KCI Concrete Journal
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • This paper reports the experimental and analytical investigations for evaluating the flexural strength of a RC slab strengthened with carbon fiber sheet (CFS). The evaluation of the ultimate flexural strength of a slab is tried under the assumption that the failure occurs when the shear stress mobilized at the interface between the concrete bottom and the glued CFS reaches its bond strength. The shear stress is evaluated theoretically and the bond strength is obtained by a laboratory test. The ultimate flexural strength is obtained by flexural static test of the slab specimen, which corresponds to the part of a real slab. From the results, the new approach based on the bond strength between concrete and CFS looks feasible to evaluate the flexural strength of the CFS and RC composite slab.

  • PDF

Buckling Analysis of Pultruded Members under Axial Compression (축방향 압축력을 받는 인발성형부재의 좌굴해석)

  • Lee, Seung Sik;Back, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.615-624
    • /
    • 2006
  • In the present paper, an extended composite beam theory that has no restriction on the lay-up and can account for Poisson effect which is significant for composite materials is proposed. Buckling equations for composite thin-walled members which are subjected to axial compression are derived based on the composite beam theory. In order to check the validity of the derived buckling equations, the results of experiments on the flexural-torsional buckling of vinylester/E-glass and polyester/E-glass pultruded T-section members and the flexural buckling of vinylester/E-glass pultruded H-section members are used as numerical examples. The comparison of the analytical results to the experimental and FE analysis results reveals that the proposed buckling equations predict the buckling loads of pultruded members conservatively by about 7%.

Evaluation of Flexural Behavior of Masonry Members Reinforced with Engineered Cementitious Composite (고인성 복합체로 보강한 조적부재의 휨 거동 평가)

  • Yang, Seung-Hyeon;Kim, Sun-Woong;Kim, Jae-Hwan;Kang, Suk-Pyo;Hong, Seong-Uk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.37-45
    • /
    • 2021
  • This paper is a basic study to evaluate the possibility of earthquake-resistant reinforcement by reinforcing engineered cementitious composite in masonry members. In order to examine the performance according to the fiber mixing rate of the engineered cementitious composite, a test specimen was prepared according to the formulation design, and flow ability, compressive strength, flexural strength, length change rate, and direct tensile strain were measured. In addition, non-reinforced masonry members, masonry members reinforced with engineered cementitious composite, and masonry members in which glass fibers and wire mesh were separately reinforced with engineered cementitious composites were manufactured, and flexural strength and maximum displacement were measured. All specimens reinforced with engineered cementitious composite showed more than 16 times the effect of maximal strength compared to that of no reinforcement, and as a result of examining the crack shape, the energy dissipation ability was excellent, confirming the possibility of seismic reinforcement.

Flexural Behavior of Post-tensioned Lightweight Concrete Continuous One-Way Slabs

  • Yang, Keun-Hyeok;Lee, Yongjei;Joo, Dae-Bong
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.4
    • /
    • pp.425-434
    • /
    • 2016
  • In this experimental study, six post-tensioned light weight concrete (LWC) continuous one-way slabs were tested in the following manner: the flexural behaviors of the members were compared with the calculations from the existing standards. The test also examined the effect of prestressing in tendons and proper prestress conditions to reduce the deflection and crack width, and to enhance the flexural capacity and ductility of LWC members. Flexural capacity and stress increments in unbonded tendons of the specimens were compared with those of the simply supported normal and the lightweight concrete members. The suggested safety limit from the American Concrete Institute (ACI) regulation on the maximum capacity and the stress incremental in unbonded tendons were also compared with the test results under simple and continuous supporting conditions.

Calculation of Crack Width and Crack Spacing of High-Strength Concrete Members (고강도콘크리트 부재의 균열폭 및 균열간격 계산에 관한 연구)

  • Jung, Gi-Oh;Lee, Gi-Yeol;Kim, Dae-Joong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.227-232
    • /
    • 2002
  • This paper describes a calculation of an average crack spacing and the maximum crack width for the high-strength concrete tensile and flexural members. Based on the uniform bond stress distribution of the average steel and concrete strains over the transfer length, the crack spacing and the crack width are proposed to utilize influence of the concrete strength and the cover thickness. This analytical results presented in this paper indicate that the proposed equations can be more effectively estimated the maximum crack width and the average crack spacing of the reinforced concrete flexural and tensile members.

  • PDF

Multi-spring model for 3-dimensional analysis of RC members

  • Li, Kang-Ning;Otani, Shunsuke
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.17-30
    • /
    • 1993
  • A practical multi-spring model is proposed for a nonlinear analysis of reinforced concrete members, especially columns, taking into account the interaction of axial load and bi-directional bending moment. The parameters of the model are determined on the basis of material properties and section geometry. The axial force-moment interaction curve of reinforced concrete sections predicted by the model was shown to agree well with those obtained by the flexural analysis utilizing realistic stress-strain relations of materials. The reliability of the model was also examined with respect to the test of reinforced concrete columns subjected to varying axial load and bi-directional lateral load reversals. The analytical results agreed well with the experiment.

Beam-column behavior of concrete filled steel tubes

  • Campione, G.;Scibilia, N.
    • Steel and Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.259-276
    • /
    • 2002
  • In the present investigation the experimental and theoretical flexural and compressive behavior of short tubular steel columns filled with plain concrete and fiber-reinforced concrete (FRC) was examined. For a given length of the members, the effects of different geometry and dimensions of the transverse cross-section (square and circular) were investigated. Constituent materials were characterized through direct tensile tests on steel coupons and through compressive and split tension tests on concrete cylinders. Load-axial shortening and load-deflection curves were recorded for unfilled and composite members. Finally, simplified expressions for the calculus of the load-deflection curves based on the cross-section analysis were given and the ultimate load of short columns was predicted.

Flexural Properties of Reinforced Steel and GFRP Reinforced Polymer Concrete T-Beams (철근 및 GFRP 보강 폴리머 콘크리트 T형 보의 휨 특성)

  • Yeon Kyu Seok;Kweon Taek Jeong;Jeong jung Ho;Jin Xing Qi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.695-698
    • /
    • 2004
  • Recently, the usage of polymer concrete mortar gathering an interest as a new construction material rapidly increases inside and outside of the country because it is an environment-friendly and endurable material. However, up to these days, the researches about the polymer composite have not been satisfactorily conducted. The polymer concrete is superior to the general cement materials in the properties of strength and durability while it is inferior in elastic modulus. Because that the members using the polymer concrete have therefore higher strength and ductility than the members of general cement concrete, an analysis equation of high-strength cement concrete can be referenced but it is not applied for the researches about the polymer concrete members. In this study, the flexural properties of T-shaped beam of the steel- and GFRP-reinforced polymer concrete are analyzed to examine the suggested analysis equation. Results of this experimental researches are to be used as the basic data in a structural design of the polymer concrete.

  • PDF

An Experiment of the Externally Prestressed 2-span Concrete Beam (외부 프리스트레스트 콘크리트 2경간 연속보의 휨 실험)

  • Oh, Seung-Hyun;Lee, Sang-Woo;Kang, Won-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.313-316
    • /
    • 2006
  • Externally prestressed structures have many advantages such as easy prestressing control and visible maintenance. Flexural strength of externally prestressed concrete members can be calculated by analysis of internal indeterminacy, which is different from internally prestressed concrete members. However, it needs nonlinear analysis considering member stiffness at strength limit state. Thus most of design codes proposed approximate methods which are empirical, based on test results. To reduce difference between accurate analysis and approximate design methods, many experiments and studies are continued. Since most of the experiments are single span beams. In order to adapt of continuous beam it needs further investigation for the continuous beam. In this study, we carried out externally prestressed 2-span concrete beam test to find out the flexural behavior and strength of externally prestressed concrete members.

  • PDF