• 제목/요약/키워드: Flexural Moment

검색결과 544건 처리시간 0.027초

FRP-UHPC 복합 보강기법으로 보강된 RC 슬라브의 휨 파괴를 위한 설계 조건 (Flexural Failure Design Criteria for Retrofitted RC Slabs using FRP-UHPC Hybrid System)

  • 김정중;노혁천;마흐무드 레다 타하
    • 복합신소재구조학회 논문집
    • /
    • 제3권2호
    • /
    • pp.11-18
    • /
    • 2012
  • This study proposes flexural failure design criteria of continuous slabs enhanced by a hybrid system of fiber reinforced polymer (FRP) and ultra high performance concrete (UHPC). The proposed hybrid retrofit system is designed to be placed at the top surface of the slabs for flexural strengthening of the sections in both positive and negative moment zones. The enhancing mechanisms of the proposed system for both positive and negative moment regions are presented. The neutral axis of the enhanced sections in positive moment zone at flexural failure is enforced to be in UHPC overlay for preventing the compression in FRP. From this condition, a relationship between design parameters of FRP and UHPC is established. Although the capacity of the proposed retrofit system to enhance flexural strength and ductility is confirmed through experiments of one-way RC slabs having two continuous spans, the retrofitted slabs failed in shear. To prevent this shear failure, a design criteria of flexural failure is proposed.

Post-peak behavior and flexural ductility of doubly reinforced normal- and high-strength concrete beams

  • Pam, H.J.;Kwan, A.K.H.;Ho, J.C.M.
    • Structural Engineering and Mechanics
    • /
    • 제12권5호
    • /
    • pp.459-474
    • /
    • 2001
  • The complete moment-curvature curves of doubly reinforced concrete beams made of normal- or high-strength concrete have been evaluated using a newly developed analytical method that takes into account the stress-path dependence of the constitutive properties of the materials. From the moment-curvature curves and the strain distribution results obtained, the post-peak behavior and flexural ductility of doubly reinforced normal- and high-strength concrete beam sections are studied. It is found that the major factors affecting the flexural ductility of reinforced concrete beam sections are the tension steel ratio, compression steel ratio and concrete grade. Generally, the flexural ductility decreases as the amount of tension reinforcement increases, but increases as the amount of compression reinforcement increases. However, the effect of the concrete grade on flexural ductility is fairly complicated, as will be explained in the paper. Quantitative analysis of such effects has been carried out and a formula for direct evaluation of the flexural ductility of doubly reinforced concrete sections developed. The formula should be useful for the ductility design of doubly reinforced normal- and high-strength concrete beams.

Flexural behavior of post-tensioned precast concrete girder at negative moment region

  • Choi, Seung-Ho;Heo, Inwook;Kim, Jae Hyun;Jeong, Hoseong;Lee, Jae-Yeon;Kim, Kang Su
    • Computers and Concrete
    • /
    • 제30권1호
    • /
    • pp.75-83
    • /
    • 2022
  • This study introduced a post-tensioned precast concrete system that was developed and designed to improve the performance of joints by post-tensioning. Full-scaled specimens were tested to investigate flexural performances at the negative moment region, where the test variables were the presence of slabs, tendon types, and post-tensioned lengths. A specimen with slabs exhibited significantly higher stiffness and strength values than a specimen without slabs. Thus, it would be reasonable to consider the effects of a slab on the flexural strength for an economical design. A specimen with unbonded mono-tendons had slightly lower initial stiffness and flexural strength values than a specimen with bonded multi-tendons but showed greater flexural strength than the value specified in the design codes. The post-tensioned length was found to have no significant impact on the flexural behavior of the proposed post-tensioned precast concrete system. In addition, a finite element analysis was conducted on the proposed post-tensioned precast concrete system, and the tests and analysis results were compared in detail.

HSB 강재 적용 강합성 복합단면 거더 정모멘트부의 휨저항강도 (Flexural Strength of Composite HSB Hybrid Girders in Positive Moment)

  • 조은영;신동구
    • 한국강구조학회 논문집
    • /
    • 제23권3호
    • /
    • pp.385-395
    • /
    • 2011
  • 교량용 HSB 고성능 강재를 적용한 정모멘트부 강합성 복합단면 거더의 휨저항강도를 모멘트-곡률 해석법으로 산정하고 LRFD 휨저항강도 설계식에 의한 휨저항강도와 비교하여 기존 설계식의 적용성을 검토하였다. 강거더의 하부플랜지는 HSB800 강재를 상부플랜지와 복부판은 HSB600 강재를 적용하였다. 다양한 연성특성을 갖는 6,205개 단면을 임의추출법으로 선정하고 재료 비선형 모멘트-곡률 해석 프로그램을 이용하여 이들 단면에 대한 휨저항강도를 구하였다. 합성단면을 구성하는 콘크리트 재료는 CEB-FIP 모델로, HSB600 및 HSB800 강재는 탄소성-변형경화 재료로 모델링하였으며 콘크리트 바닥판의 압축강도는 30MPa, 45MPa 및 60MPa를 고려하였다. HSB 강재를 적용한 강합성 복합단면 거더의 연성계수와 콘크리트 바닥판의 압축강도에 따른 휨저항강도 특성을 분석하였다. HSB 고성능강을 적용한 이종 복합단면 강합성 거더의 모멘트-곡률해석 결과, 현 AASHTO LRFD 정모멘트부 휨저항강도 산정식을 적용할 수 있는 것으로 평가되었다.

고강도철근콘크리트 보의 휨강성에 관한 실험적 연구 (An Experimental Study on the Flexural Rigidity of Reinforced High Strength Concrete Beams)

  • 고만영;김상우;김용부
    • 콘크리트학회논문집
    • /
    • 제12권2호
    • /
    • pp.71-78
    • /
    • 2000
  • This paper presents a study on the flexural rigidity of reinforced high strength concrete beams. Thirty six beams with different compressive strength of concrete, tensile reinforcement ratio, compressive reinforcement ratio, and pattern of loadings(1 point loading and 2 points loading) were tested to evaluate the effective moment of inertia. According to the experimental results, the eqation(1) proposed by ACI code for the effective moment of inertia overestimated that of simply supported reinforced high strength concrete beams. Thus, in this paper, an empirical equation(3) is proposed as a lower bound of 90% confidence limit to estimate the effective moment of inertia of simply supported reinforced high strength concrete beams.

고강도 철근콘크리트 기둥의 구성모델 (Constitutive Modeling of Confined High Strength Concrete)

  • Kyoung Oh, Van;Hyun Do, Yun;Soo Young, Chung
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.445-450
    • /
    • 2003
  • The moment-curvature envelope describes the changes in the flexural capacity with deformation during a nonlinear analysis. Therefore, the moment-curvature analysis for reinforced concrete columns, indicating the available flexural strength and ductility, can be conducted providing the stress-strain relation for the concrete and steel are known. The moments and curvatures associated with increasing flexural deformations of the column may be computed for various column axial loads by incrementing the curvature and satisfying the requirements of strain compatibility and equilibrium of forces. Clearly it is important to have accurate information concerning the complete stress-strain curve of confined high-strength concrete in order to conduct reliable moment-curvature analysis to assess the ductility available from high-strength columns. However, it is not easy to explicitly characterize the mechanical behavior of confined high-strength concrete because of various parameter values, such as the confinement type of rectilinear ties, the compressive strength of concrete, the volumetric ratio and strength of rectangular ties, etc. So a stress-strain confinement model is developed which can simulate a complete inelastic moment-curvature relations of a high-strength reinforced concrete column

  • PDF

Semi analytical solutions for flexural-torsional buckling of thin-walled cantilever beams with doubly symmetric cross-sections

  • Gilbert Xiao;Silky Ho;John P. Papangelis
    • Structural Engineering and Mechanics
    • /
    • 제87권6호
    • /
    • pp.541-554
    • /
    • 2023
  • An unbraced cantilever beam subjected to loads which cause bending about the major axis may buckle in a flexuraltorsional mode by deflecting laterally and twisting. For the efficient design of these structures, design engineers require a simple accurate equation for the elastic flexural-torsional buckling load. Existing solutions for the flexural-torsional buckling of cantilever beams have mainly been derived by numerical methods which are tedious to implement. In this research, an attempt is made to derive a theoretical equation by the energy method using different buckled shapes. However, the results of a finite element flexural-torsional buckling analysis reveal that the buckled shapes for the lateral deflection and twist rotation are different for cantilever beams. In particular, the buckled shape for the twist rotation also varies with the section size. In light of these findings, the finite element flexural-torsional buckling analysis was then used to derive simple accurate equations for the elastic buckling load and moment for cantilever beams subjected to end point load, uniformly distributed load and end moment. The results are compared with previous research and it was found that the equations derived in this study are accurate and simple to use.

물 흡수에 따른 fiber reinforced composite $(Fibrekor^{(R)})$의 굽힘 특성 변화 (Flexural characteristic changes of fiber reinforced composite $(Fibrekor^{(R)})$ according to water absorption)

  • 김석범;김민정;김경호;최광철
    • 대한치과교정학회지
    • /
    • 제35권5호
    • /
    • pp.361-370
    • /
    • 2005
  • 보철이나 수복 영역에서 재료 자체의 기계적 특성을 강화하기 위해 많이 사용되어 오던 fiber reinforced composite (FRC)는 최근 교정 영역까지 그 사용이 확대되고 있다 이 연구의 목적은 silica glass fiber로 강화된 FRC (FibreKor. Jeneric/pentron Inc., Wallingford, U. S.A.)를 다양한 기간 동안 물에 저장하였을 때 물 흡수가 FRC의 굽힘 특성에 미치는 영향을 알아보고자 함이었다. 시편은 임상에서 적응하는 원형, (직사)각형의 두 가지 형태를 기준으로 plasma arc light를 이용하여 광중합하여 제작하였다. 각형 원형 각각 5개의 시편을 실은(평균 $23^{\circ}C$)의 증류수 안에 0시간. 1시간. 1일. 1주, 15일 1개월, 3개월의 기간 동안 보관한 후 torque tester를 이용하여 굽힘 시험을 시행하였다 굽힘 강성(flexural stiffness)은 24시간 후에 원형의 경우 58%, 각형의 경우 25%로 감소했으며 3개월 후에는 각각 28%, 19%의 실험 전 상태의 강성을 나타냈다. 항복 굽힘 모멘트(yield flexural moment. $3^{\circ}$ offset)는 24시간 후에 원형의 경우 45% 각형의 경우 75%로 감소했으며 3개월 후에는 실험 전 항복 굽힘 모멘트의 29%, 60%로 각각 감소하였다 파절 굽힘 모멘트(ultimate flexural moment)는 24시간 후에 원형의 경우 30% 각형의 경우 75%로 감소했으며 3개월 후에는 실험 전 값의 25%, 37%로 각각 감소하였다 이상의 실험을 통하여 FibreKor는 물에 보관 시 초기에 굽힘 강성이 급격히 저하됨을 알 수 있었다. 따라서 수분에 대한 굽힘 강도 증가를 위한 연구가 향후 필요할 것이다.

Experimental assessment on flexural behavior of demountable steel-UHPC composite slabs with a novel NPR steel plate

  • Jin-Ben Gu;Jun-Yan Wang;Yi Tao;Qing-Xuan Shi
    • Steel and Composite Structures
    • /
    • 제49권4호
    • /
    • pp.381-392
    • /
    • 2023
  • This study experimentally investigates the flexural behavior of steel-UHPC composite slabs composed of an innovative negative Poisson's ratio (NPR) steel plate and Ultra High Performance Concrete (UHPC) slab connected via demountable high-strength bolt shear connectors. Eight demountable composite slab specimens were fabricated and tested under traditional four-point bending method. The effects of loading histories (positive and negative bending moment), types of steel plate (NPR steel plate and Q355 steel plate) and spacings of high-strength bolts (150 mm, 200 mm and 250 mm) on the flexural behavior of demountable composite slab, including failure mode, load-deflection curve, interface relative slip, crack width and sectional strain distribution, were evaluated. The results revealed that under positive bending moment, the failure mode of composite slabs employing NPR steel plate was distinct from that with Q355 steel plate, which exhibited that part of high-strength bolts was cut off, part of pre-embedded padded extension nuts was pulled out, and UHPC collapsed due to instantaneous instability and etc. Besides, under the same spacing of high-strength bolts, NPR steel plate availably delayed and restrained the relative slip between steel plate and UHPC plate, thus significantly enhanced the cooperative deformation capacity, flexural stiffness and load capacity for composite slabs further. While under negative bending moment, NPR steel plate effectively improved the flexural capacity and deformation characteristics of composite slabs, but it has no obvious effect on the initial flexural stiffness of composite slabs. Meanwhile, the excellent crack-width control ability for UHPC endowed composite members with better durability. Furthermore, according to the sectional strain distribution analysis, due to the negative Poisson's ratio effect and high yield strength of NPR steel plate, the tensile strain between NPR steel plate and UHPC layer held strain compatibility during the whole loading process, and the magnitude of upward movement for sectional plastic neutral axis could be ignored with the increase of positive bending moment.

할선강성해석법을 이용한 모멘트저항골조의 모멘트 재분배 (Moment Redistribution for Moment-Resisting Frames using Secant Stiffness Analysis Method)

  • 박홍근;김창수;엄태성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.221-224
    • /
    • 2008
  • 할선강성을 이용하여 모멘트저항골조의 모멘트재분배를 수행하는 선형해석법을 연구하였다. 제안된 방법에서는 모멘트재분배가 요구되는 부재의 소성힌지에 회전스프링을 모델링한 후, 이 스프링의 할선 강성을 조정하여 비탄성변형으로 인해 저감된 부재의 휨강성을 반영한다. 회전스프링의 할선강성을 조정하여 선형해석한 결과, 해당 부재와 전체 구조물에서 힘의 평형이 만족될 때까지 계산을 반복한다. 할선강성해석을 통해, 소성힌지의 비탄성변형에 의한 하중의 재분배가 고려될 수 있으며, 해당 소성힌지에서의 요구회전변형이 변형능력을 초과하지 않는지 비교함으로써 안전성을 평가할 수 있다. 검증을 위해, 제안된 방법은 기존의 연속보에 대한 실험연구와 비교되었으며, 기존건물의 평가에 적용되었다.

  • PDF