• 제목/요약/키워드: Flexural Beam

검색결과 1,210건 처리시간 0.024초

Vibrations of an axially accelerating, multiple supported flexible beam

  • Kural, S.;Ozkaya, E.
    • Structural Engineering and Mechanics
    • /
    • 제44권4호
    • /
    • pp.521-538
    • /
    • 2012
  • In this study, the transverse vibrations of an axially moving flexible beams resting on multiple supports are investigated. The time-dependent velocity is assumed to vary harmonically about a constant mean velocity. Simple-simple, fixed-fixed, simple-simple-simple and fixed-simple-fixed boundary conditions are considered. The equation of motion becomes independent from geometry and material properties and boundary conditions, since equation is expressed in terms of dimensionless quantities. Then the equation is obtained by assuming small flexural rigidity. For this case, the fourth order spatial derivative multiplies a small parameter; the mathematical model converts to a boundary layer type of problem. Perturbation techniques (The Method of Multiple Scales and The Method of Matched Asymptotic Expansions) are applied to the equation of motion to obtain approximate analytical solutions. Outer expansion solution is obtained by using MMS (The Method of Multiple Scales) and it is observed that this solution does not satisfy the boundary conditions for moment and incline. In order to eliminate this problem, inner solutions are obtained by employing a second expansion near the both ends of the flexible beam. Then the outer and the inner expansion solutions are combined to obtain composite solution which approximately satisfying all the boundary conditions. Effects of axial speed and flexural rigidity on first and second natural frequency of system are investigated. And obtained results are compared with older studies.

Flexural behaviour of steel plate-masonry composite beams

  • Jing, Deng-Hu;Cao, Shuang-Yin;Shi, Lei
    • Steel and Composite Structures
    • /
    • 제13권2호
    • /
    • pp.123-137
    • /
    • 2012
  • Steel plate-masonry composite structure is a newly-developed type of structural technique applicable to existing masonry buildings by which the load-bearing walls can be removed for large spaces. This kind of structure has been used in practice for its several advantages, but experimental investigation on its elements is nearly unavailable in existing literature. This paper presents an experimental study on the flexural behaviour of four steel plate-masonry composite beams loaded by four-point bending. Test results indicate that failure of the tested beams always starts from the local buckling of steel plate, and that the tested beams can satisfy the requirement of service limit state. In addition, the assumption of plane section is still remained for steel plate prior to local buckling or steel yielding. By comparative analyses, it was also verified that the working performance of the beam is influenced by the cross-section of steel plate, which can be efficiently enhanced by epoxy adhesive rather than cement mortar or nothing at all. Besides, it was also found that the contribution of the encased masonry to the flexural capacity of the composite beam cannot be ignored when the beam is injected with epoxy adhesive.

층고절감을 위한 반슬림플로어 합성보의 휨성능 평가 (Flexural Performance Evaluation of Semi-slim floor Composite Beams for Reduction of Story Height)

  • 이은택;이상훈;장보라
    • 한국강구조학회 논문집
    • /
    • 제20권1호
    • /
    • pp.165-173
    • /
    • 2008
  • 강구조 초고층건축물의 실용성을 높이기 위하여 내화성능이 우수하며 일반적인 합성보와 비교하여 층고절감이 가능하며 평면의 자유로운 변경과 공장생산에 의한 시공 품질관리가 가능한 새로운 공법개발이 시급하다고 판단된다. 따라서 기존 슬림플로어시스템의 문제점을 보완시킨 반슬림플로어를 적용한 합성보의 구조성능실험을 하였고, 이에 콘크리트와의 일체성 확보 및 휨에 대한 구조적 성능 등에 관한 연구를 수행하였다. 본 연구는 반슬림플로어시스템을 적용한 합성보의 휨거동을 평가하기 위한 것이다. 실험은 슬래브지지보의 구 조형식, 슬래브두께, 개구부의 설치 여부, 전단연결재의 유무를 변수로 하여 총 5개의 반슬림합성보에 대한 단순지지 휨실험을 수행하였다. 실험 결과 모든 실험체가 연성적인 거동을 보였다.

Flexural behavior of partially prefabricated partially encased composite beams

  • Liang, Jiong-feng;Zhang, Liu-feng;Yang, Ying-hua;Wei, Li
    • Steel and Composite Structures
    • /
    • 제38권6호
    • /
    • pp.705-716
    • /
    • 2021
  • An innovative partially precast partially encased composite beam (PPECB) is put forward based on the existing research. In order to study the flexural performance of the new composite beam which has precast part and cast-in-place part, six prefabricated specimens and one cast-in-place specimen are designed with considering the influence of the production method, the steel flange thickness, the concrete strength grade and the stirrup process on the behavior of the composite beam. Through four points loading and test data collection and analysis, the behavior of partially prefabricated specimen is similar to that of cast-in-place specimen, and the casting method, the thickness of the steel flange, the concrete strength grade and the stirrup process have different influence on the crack, yield and peak load bearing capacity of the component. Finally, the calculation theory of plastic bending of partially precast partially encased concrete composite beams is given. The calculation results are in good agreement with the experimental results, which can be used for practical engineering theory guidance. This paper can provide reference value for further research and engineering application.

래티스재의 인장력을 고려한 U-플랜지 트러스 복합보의 휨 내력에 관한 연구 (The Flexural Capacity of the U-flanged Truss Hybrid Beam considering the Tensile Force of Lattice Members)

  • 이성민;오명호;김영호
    • 한국공간구조학회논문집
    • /
    • 제23권1호
    • /
    • pp.53-60
    • /
    • 2023
  • A bending experiment was conducted to verify the structural performance of the U-flange truss hybrid bean using rebars or steel pipes to reinforce the upper compression zone. As a result of evaluating the bending strength of the truss hybrid beam according to the Structural Design Standard (KDS 14 2020: 2022) by introducing the lattice member as a tensile resistance element, the following conclusions were obtained. Considering the lattice element as a tensile resistance element, the nominal bending strength was increased by 38.57 to 47.90 kN.m. As a result of reviewing the experiment as to whether the flexural member has proper ductility, it was found that it is desirable to place appropriate rebars, steel quality plans, and lateral restraints on the upper and lower parts of the hybrid beam to have sufficient ductility ratio.

탄소섬유시트로 보강된 철근콘크리트 보의 휨 거동 (Flexural Behaviors of Reinforced Concrete Beams Strengthened with Carbon Fiber Sheets)

  • 김성도
    • 한국전산구조공학회논문집
    • /
    • 제23권2호
    • /
    • pp.227-234
    • /
    • 2010
  • 탄소섬유시트로 보강된 철근콘크리트 보의 휨 거동을 조사하기 위해 하나의 기준보와 8개의 보강보(4개의 NU-보강보, 4개의 U-보강보)에 대한 휨 실험을 수행하였다. NU-보강보는 단부에 U 밴드를 적용하지 않은 보를, U-보강보는 U 밴드를 가진 보를 의미한다. 보강보 실험에서의 실험변수들은 탄소섬유시트의 보강겹수, U 밴드의 적용유무등이 있다. U 밴드를 가진 보강 시스템은 섬유시트의 계면박리 파괴를 지연시키고, U 밴드가 없는 보강시스템보다 나은 연성거동을 나타내 보였다. NU 보강보와 U 보강보 모두에서 섬유시트 겹수의 증가에 따라 최대하중과 휨 강성은 증가하였다. 실험결과들을 이론적인 비선형 휨 해석결과와 비교하였으며, 하중-처짐 선도 및 항복이전단계와 항복이후단계에서의 항복하중, 최대하중, 휨 강성 등이 잘 일치함을 확인하였다.

Flexural behavior of beams in steel plate shear walls

  • Qin, Ying;Lu, Jin-Yu;Huang, Li-Cheng-Xi;Cao, Shi
    • Steel and Composite Structures
    • /
    • 제23권4호
    • /
    • pp.473-481
    • /
    • 2017
  • Steel plate shear wall (SPSW) system has been increasingly used for lateral loads resisting system since 1980s when the utilization of post-buckling strength of SPSW was realized. The structural response of SPSWs largely depends on the behavior of the surrounded beams. The beams are normally required to behave in the elastic region when the SPSW fully buckled and formed the tension field action. However, most modern design codes do not specify how this requirement can be achieved. This paper presents theoretical investigation and design procedures of manually calculating the plastic flexural capacity of the beams of SPSWs and can be considered as an extension to the previous work by Qu and Bruneau (2011). The reduction in the plastic flexural capacity of beam was considered to account for the presence of shear stress that was altered towards flanges at the boundary region, which can be explained by Saint-Venant's principle. The reduction in beam web was introduced and modified based on the research by Qu and Bruneau (2011), while the shear stress in the web in this research is excluded due to the boundary effect. The plastic flexural capacity of the beams is given by the superposition of the contributions from the flanges and the web. The developed equations are capable of predicting the plastic moment of the beams subjected to combined shear force, axial force, bending moment, and tension fields induced by yielded infill panels. Good agreement was found between the theoretical results and the data from previous research for flexural capacity of beams.

Hybrid Vibration Control of Smart Laminated Composite Beams using Piezoelectric and Viscoelastic Material

  • Kang, Young-Kyu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권1호
    • /
    • pp.37-42
    • /
    • 2003
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained layer damping have been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

유리섬유보강 RC보의 휨 및 전단 피로성능개선의 실험 연구 (Experimental Study on the Fatigue Enhancement of RC Beams with Glassfibers)

  • 조창백;양정비;정영수;김기봉
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.507-512
    • /
    • 1999
  • In recent years, glassfibers have been used for strengthening in RC structure because of low material cost and easy repairing work. The purpose of this study is to experimentally and analytically investigate the effect of glassfibers for enhancing the capacity of RC flexural beams and shear beams. The experimental result shows that yield and ultimate strength of RC flexural beam with glassfibers are increased by approxiamate 13% and 26%, comparing with those for without glassfibers, and also ultimate strength of RC shear beam with glassfibers are increased by 34%, comparing with those for without glassfibers.

  • PDF

RC보의 휨 균열폭 및 균열간격에 관한 실험 및 이론 연구 (Assessment of Flexural Crack Width and Crack Spacing of Reinforced Concrete Beams)

  • 오병환;김세훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.105-108
    • /
    • 2000
  • With exact analysis of cracks in RC beam, present or past stress states can be traced. For analysis of Flexural cracks, experiments are carried out focusing on variation of crack widths and crack spacing due to stress, beam properties. The crack width expectation formulas of each code are compared and initial crack spacing expectation formula is proposed.

  • PDF