• Title/Summary/Keyword: Flexural Beam

Search Result 1,204, Processing Time 0.034 seconds

Predicting the flexural capacity of RC beam with partially unbonded steel reinforcement

  • Wang, Xiao-Hui;Liu, Xi-La
    • Computers and Concrete
    • /
    • v.6 no.3
    • /
    • pp.235-252
    • /
    • 2009
  • Due to the reduction of bond strength resulting from the high corrosion level of reinforcing bars, influence of this reduction on flexural capacity of reinforced concrete (RC) beam should be considered. An extreme case is considered, where bond strength is complete lost and/or the tensile steel are exposed due to heavy corrosion over a fraction of the beam length. A compatibility condition of deformations of the RC beam with partially unbonded length is proposed. Flexural capacity of this kind of RC beam is predicted by combining the proposed compatibility condition of deformations with equilibrium condition of forces. Comparison between the model's predictions with the experimental results published in the literature shows the practicability of the proposed model. Finally, influence of some parameters on the flexural capacity of RC beam with partially unbonded length is discussed. It is concluded that the flexural capacity of the beam may not be influenced by the completely loss of bond of the whole beam span as long as the tensile steel can yield; whether or not the reduction of the flexural capacity of the beam resulting from the loss of bond over certain length may occur depends on the detailed parameters of the given beam.

Method for flexural stiffness of steel-concrete composite beams based on stiffness combination coefficients

  • Ding, Faxing;Ding, Hu;He, Chang;Wang, Liping;Lyu, Fei
    • Computers and Concrete
    • /
    • v.29 no.3
    • /
    • pp.127-144
    • /
    • 2022
  • To investigate the flexural stiffness of the steel-composite beam, the contributions of the concrete slab and steel beam to the stiffness were considered separately. The method for flexural stiffness of the composite beam, considering the stiffness of the concrete slab and steel beam, was proposed in this paper. In addition, finite element models of the composite beams were established and validated. Parametric analyses were carried out to study the effects of different parameters on the neutral axis distance reduction factors of the concrete slab and steel beam. Afterward, the neutral axis distance reduction factors were fitted, and the stiffness combination coefficients of the two parts were solved. Based on the stiffness combination coefficients, the flexural stiffness of the composite beam can be obtained. The proposed method was validated by the tested and analyzed results. The method has a simple form and high accuracy in predicting the flexural stiffness of the steel-concrete composite beam, even though the degree of shear connection is less than 0.5.

A Rational Approach to the Flexural Concrete Beam Analysis with Crack Growth using Fracture Mechanic Concepts (크랙을 고려한 휨을 받는 콘크리트보의 해석)

  • Heo, Gwang Hee;Choi, Man Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.4
    • /
    • pp.159-171
    • /
    • 1998
  • This study attempts to develop a rational approach to flexural concrete beam analysis with crack growth. In order to develope analytical solutions, several simplification and assumption are made and the Hillerborg fictitious crack model is adapted for new rational approach to the flexural concrete beam. To provide desired results, the concrete beams with various conditions(more than 126 beam conditions) are analyzed. Before producing the results, these assumptions are founded to be justified by comparison with a FE analysis. The results for each condition of the beams are presented in terms of crack lengths, the strength and cracking stability of concrete beams. And also size effects in a flexural concrete beam is studied using a new flexural cracking model.

  • PDF

An Experimental Research on the Flexural Behavior of Concrete Beams with Lock Joint Coupler Bars (커플러 이음 철근을 사용한 철근콘크리트 보의 휨 거동에 대한 실험적 연구)

  • Park, Sun-Kyu;Lee, Kwal;Ko, Won-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.3
    • /
    • pp.197-204
    • /
    • 2000
  • Tensile strength (stress) of bar splice is important in the research of mechanical behavior of reinforced concrete structures-beam, column etc.- with bar splice. The purpose of this research is to evaluate the flexural behavior - deflection of beam specimens, strain of main bars - of reinforced concrete beam with Lock Joint Coupler. To make a comparative research, reinforced concrete beam specimens with normal deformed bar and lap splice are tested and analyzed. Test results, Comparing a deflection of three types flexural specimens, a flexural specimen with Lock Joint Coupler is 40% greater than the other flexural specimens. At the center of flexural specimen, the strain of main bar(D29) with lock joint coupler is 50% less, and vice versa, at the point of 14cm far from the center of flexural specimen, the strain of main bar(D29) with lock joint coupler is 9% larger than the strain of main bar(D29) which calculated using the classical flexure theory. A discords, between a deflection behavior of the flexural specimens and a strain of the main bar, are caused by the difference of strain between the lock joint coupler and main bar, near the lock joint coupler. So, additional research is need to verify as stated above discords.

  • PDF

A Study on the Flexural Behavior of the RC Beams Strengthened with Glass Fiber Sheets (유리 섬유 시트로 보강된 RC보의 휨거동 특성에 관한 연구)

  • Seo, Sok-Yeong;Cheung, Jin-Hwan;Kim, Seong-Do;Cho, Baik-Soon;Park, Jeong-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.161-164
    • /
    • 2005
  • The flexural behavior of a strengthened beam, that is a reinforced. concrete beam with externally bonded fiber sheets, was theoretically and experimentally investigated. The effects of the amount of glass fiber sheets varying from 1 to 4 plies on the flexural capacity of the strengthened beam are also examined. The flexural rigidity of the strengthened beam was enhanced compared with RC beam. In addition, the failure mode and load-deflection relationship for the strengthened beam and the comparison of analysis with experiment are extensive investigated. Finally, the determination of the nominal moment capacity $M_n$ of the strengthened beam will be discussed

  • PDF

An Study on the flexural capacity of 'Hybrid Beam' (하이브리드 보의 휨성능에 관한 연구)

  • Hong, Sung-Gul;Yang, Dong-Hyun;Jung, Jong-Hyun;Lim, Byung-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.301-304
    • /
    • 2006
  • This study was performed to suggest a theoretical method of flexural capacity of 'Hybrid Beam'. Since the center of 'Hybrid Beam' is composed of embedded composite beam section, a theoretical method of embedded composite beam could be applied to estimation of flexural capacity of 'Hybrid Beam'. In this study, a theoretical evaluation method for flexural capacity of embedded composite beam, which is suggested by KBC 2005, is chosen and its applicability is evaluates as comparing theoretical results with experimental results. In results, for estimation of theoretical ultimate strength, it is proper method that both effects due to concrete and rebar are considered and whole section is assumed to be plastic. and for estimation of theoretical strength at yielding stste, it is proper to apply allowable stress design.

  • PDF

Flexural capacity evaluation of hybrid composite beam using high strength steel (고강도강재를 적용한 하이브리드 합성보의 휨성능 평가)

  • Kim, Dae-Hee;Lee, Kyung-Koo;Kim, Young-Gi;Min, Kyung-Cheol;Byeon, Tae-Woo;Joo, Eun-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.146-147
    • /
    • 2022
  • Exposed composite beams composed of H-beams and concrete slabs are generally used in building structures because of their excellent economics and flexural strength. However, deep beams used under large load often make difficulties in construction. In this study, an exposed composite beam with high strength steel (SM460) used in the bottom flange of built-up H-shaped beam, so-called S-Beam, was proposed in order to reduce beam depth. And its positive and negative flexural strengths were experimentally evaluated. The test results showed that S-Beam has excellent flexural strength and ductility.

  • PDF

Flexural Behavior of I-beam Composite Hollow Slabs (I형강 합성 중공바닥판의 휨거동)

  • 김대호;심창수;박창규;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.421-426
    • /
    • 2003
  • For the replacement of deteriorated concrete decks or wider-span slab, composite slab could be very attactive due to higher stiffness and strength. Based on the previous research, a modified I-beam composite hollow slab was suggested. In order to investigate the static flexural behavior of the proposed composite slab and to suggest its flexural design method, experiments were performed. Judging from the tests, a composite slab with I-beam having a semi-circle hole showed better structural performance. The effect of web details on the flexural stiffness was negligible. Flexural stiffness, ultimate strength, and ductility of the composite slabs were significantly greater than the RC slab due to composite action. While the failure of the RC slab was punching shear failure, the composite hollow slab showed flexural cracking and failure by yielding of the I-beams and crushing of concrete. Therefore, the current one-way design concept is appropriate for the design of I-beam composite hollow slab.

  • PDF

Flexural Analysis of HPFRCC Beam Considering Multiple Cracks (다중균열분산특성을 고려한 HPFRCC부재의 휨해석)

  • Jang, Kyu-Hyeun;Shin, Kyung-Joon;Shin, Yong-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.369-372
    • /
    • 2006
  • In this paper, analysis method of HPFRCC is proposed as predicting properties flexural behavior. For analyzing HPFRCC beam, properties of strain-hardening, multiple cracking, and crack spacing control are considered as non-homogeneous material properties of the beam. This paper focused on the deflection, maximum moment of the flexural beam, distribution of crack width with the monte carlo simulation.

  • PDF

Flexural Analysis of Steel Fiber Rreinforced Concrete Beam (강섬유 보강 콘크리트 보의 휨 해석)

  • 이차돈
    • Computational Structural Engineering
    • /
    • v.3 no.4
    • /
    • pp.113-122
    • /
    • 1990
  • An analytical simulation of the flexural behavior of SFRC beam has been illustrated. Curvature distributions and crack opening in critical region were taken into account. Compressive and tensile constitutive models which express post-peak behavior of SFRC with stress-crack opening relationships were incorporated in simulating nonlinear flexural behavior of the beam. The model was able to predict test results with reasonable accuracy. Behavior of the critical section and effects of different factors m the flexural behavior of SFRC beam were investigated. Simple observation and statistical approach have been made in selecting most influential parameters in flexural behavior of SFRC.

  • PDF