• Title/Summary/Keyword: Flexible pavement

Search Result 82, Processing Time 0.03 seconds

Evelopment of a Practical Mechanistic-Empirical design Procedure for Flexible Pavements (역학적이론과 경험에 근거한 실용적 연성포장 설계법 개발)

  • Park, Dong-Yeob;Kim, Hyung-Bae;Buch, Neeraj;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.4 no.3 s.13
    • /
    • pp.1-13
    • /
    • 2002
  • Design methods for new flexible pavements and overlays are in the transition from empirical to mechanistic approach, and many state highway agencies trend to move toward the adoption and use of mechanistic-empirical (M-E) design in new constructions and rehabilitations of flexible pavements. Hence, the Michigan Department of Transportation (MDOT) decided to develop a M-E flexible pavement design procedure, in which major pavement distresses such as fatigue cracking and rutting are employed as indicators of the serviceability of a flexible pavement. The main concept of the developed design procedure is that a designed pavement that is supposed to carry a certain number of traffic must satisfy designated thresholds of rut depths and fatigue lives during a service period. For the M-E design procedure, transfer functions were developed to predict rut-depths and fatigue lives. These functions related the pavement responses to pavement performance. For validation, three current new flexible pavement design cases were obtained from the MDOT. In these cases, asphalt concrete (AC) layer thicknesses determined by the suggested M-E procedure compare favorably with those determined by the current MDOT design practice that is based on AASHTO design guide. This finding implies that the suggested Michigan M-E flexible pavement design procedure can provide a good opportunity to improve the current design practice.

  • PDF

Three-dimensional analysis of flexible pavement in Nepal under moving vehicular load

  • Ban, Bijay;Shrestha, Jagat K.;Pradhananga, Rojee;Shrestha, Kshitij C.
    • Advances in Computational Design
    • /
    • v.7 no.4
    • /
    • pp.371-393
    • /
    • 2022
  • This paper presents a three-dimensional flexible pavement simulated in ANSYS subjected to moving vehicular load on the surface of the pavement typical for the road section in Nepal. The adopted finite element (FE) model of pavement is validated with the classical theoretical formulations for half-space pavement. The validated model is further utilized to understand the damping and dynamic response of the pavement. Transient analysis of the developed FE model is done to understand the time varying response of the pavement under a moving vehicle. The material properties of pavement considered in the analysis is taken from typical road section used in Nepal. The response quantities of pavement with nonlinear viscoelastic asphalt layer are found significantly higher compared to the elastic pavement counterpart. The structural responses of the pavement decrease with increase in the vehicle speed due to less contact time between the tires of the vehicle and the road pavement.

Appropriate Boundary Conditions for Three Dimensional Finite Element Implicit Dynamic Analysis of Flexible Pavement (연성포장의 3차원 유한요소해석을 위한 최적 경계조건 분석)

  • Yoo, Pyeong-Jun;Al-Qadi, Imad L.;Kim, Yeon-Bok
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.213-224
    • /
    • 2008
  • Flexible pavement responses to vehicular loading, such as critical stresses and strains, in each pavement layer, could be predicted by the multilayered elastic analysis. However, multilayered elastic theory suffers from major drawbacks including spatial dimension of a numerical model, material properties considered in the analysis, boundary conditions, and ill-presentation of tire-pavement contact shape and stresses. To overcome these shortcomings, three-dimensional finite element (3D FE) models are developed and numerical analyses are conducted to calculate pavement responses to moving load in this study. This paper introduces a methodology for an effective 3D FE to simulate flexible pavement structure. It also discusses the mesh development and boundary condition analysis. Sensitivity analyses of flexible pavement response to loading are conducted. The infinite boundary conditions and time-dependent history of calculated pavement responses are considered in the analysis. This study found that the outcome of 3D FE implicit dynamic analysis of flexible pavement that utilizes appropriate boundary conditions, continuous moving load, viscoelastic hot-mix asphalt model is comparable to field measurements.

  • PDF

Effect of Interface Conditions on Flexible Pavement Fatigue Cracking Using 3D Finite Element Analysis (3차원 유한요소해석을 통한 연성포장의 층간접촉특성이 피로균열에 미치는 영향 평가)

  • Jo, Myoung-Hwan;Kim, Nak-Seok
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.109-112
    • /
    • 2007
  • To determine design or remaining life of flexible pavement, tensile strain at the bottom of asphalt concrete course and vertical strain on top of subgrade should be estimated. Various computer programs can be used for determining the strain at the critical position in pavement. However, these are conducted under the assumptions of full bonded or unbound state of layer interface conditions. This study compares the output of finite element analysis and multi-layer elastic analysis as vertical load was applied to the surface of flexible pavement. It is noted that the pavement performance is significantly affected depending upon the interface conditions.

  • PDF

An Analytical Study of Flexible Pavement Design Using Resilient Modulus Model of Expanded Polystyrene (EPS) (EPS 회복탄성계수 모델을 이용한 연성포장설계의 해석적 연구)

  • Park, Ki-Chul;Chang, Yong-Chai
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.35-44
    • /
    • 2015
  • The resilient modulus model of EPS geofoam to be used for a flexible pavement design was developed. In this study, the model was applied to design the flexible pavement and to predict the magnitude of the deformation of EPS geofoam blocks as a subgrade in the flexible pavement structure by using the resilient modulus model of EPS geofoam (RMEG) program. The RMEG program presented how much the EPS geofoam subgrade settled over the designed duration and the AASHTO flexible pavement design equation with the resilient modulus of EPS geofoam noted that how long the flexible pavement endured under traffic loads with 70% reliability for the estimated duration with less than 5mm vertical deformation during 20.6 years without the significant pavement distress as a substitute material for the natural soils.

Geotechnical problems in flexible pavement structures design

  • Mato G. Uljarevic;Snjezana Z. Milovanovic;Radovan B. Vukomanovic;Dragana D. Zeljic
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.35-47
    • /
    • 2023
  • Deformability of road pavements in the form of ruts represent a safety risk for road users. In the procedures for dimensioning the pavement structure, the requirement that such deformations do not occur is imperatively included, which results in the appropriate selection of elements (material, geometry) of the pavement structure. Deformability and functionality, will depend of the correct design of pavement structure during exploitation period. Nevertheless, there are many examples where deformations are observed on the pavement structure, in the form of rutting at parts of the road with relatively short length, realised in the same climatic and the same geoenvironmental conditions. The performed analysis of deformability led to the conclusion that the level of deformation is a function of the speed of traffic. This effect is observed on city roads, but also outside of urban areas at roads with speed limits are significant, due to the traffic management, traffic jams (intersections, etc.). Still, the lower speed cause greater deformations. The authors tried to describe the deformability of flexible pavement structures, from the aspects of geotechnical problems, as a function of driving speed. Outcome of the analysis is a traffic load correction coefficient, in terms of using the existing methods of flexible pavement structures design.

Effect of temperature on service life of flexible pavement using finite element analysis

  • Amin Hamdi
    • Geomechanics and Engineering
    • /
    • v.32 no.5
    • /
    • pp.513-521
    • /
    • 2023
  • Temperature is one of the most critical elements that influence the rutting and fatigue resistance of flexible pavements. Particularly in extreme hot regions in Saudi Arabia, high temperature would significantly reduce the rutting resistance of flexible pavements leading to reduction of pavement service life. Due to the impacts of global warming, average temperature in Saudi Arabia is expected to further increase by about 4℃ by the end of the 21st century. The substantial increase in average temperature will elevate the expected pavement maintenance and rehabilitation cost. This paper analyzes the structural effects of temperature on pavement using layered elastic analysis based on finite element techniques. The research team calculated the potential loss of pavement service life due to the projected temperature increase and climate change. The paper also analyzed potential impact of using carbon waste in asphalt concrete to tackle the derogatory impacts of temperature rise.

Analytical Study on Resilient Modulus Model of Expanded Polystyrene(EPS) Geofoam as a Subgrade Material in Flexible Pavement (연성포장에서 노상재료로서 EPS지오폼의 회복탄성계수의 모델에 관한 분석적 연구)

  • Park, Ki-Chul;Chang, Yong-Chai
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.61-68
    • /
    • 2012
  • The main objective of this study is to develop an analytical model for the resilient modulus of EPS geofoam when it is applied for flexible pavement as a subgrade material. This analytical model has been developed based on the results from triaxial compression tests. And this model can be used to analyze the flexible pavement structure using the finite element method by developing a program or modifying an existing program for any desired purposes. The results of this study show that the EPS geofoam as a replacement material for subgrade in flexible pavement is a feasible alternative to natural weak soils.

Development of Rutting Prediction Model of Flexible Pavement using Repetitive Axial Loading Test (반복 축하중 시험을 이용한 연성포장의 소성변형 예측모델 개발)

  • Kim, Nakseok
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.4
    • /
    • pp.491-498
    • /
    • 2017
  • The primary objective of this research is to develop a rutting performance prediction model of flexible pavement. Extensive laboratory testings were conducted to achieve the objective. A new test method employing repetitive axial loading with confinement was also adopted to estimate the rutting performance of asphalt concrete in the research. The rutting prediction model employes a layer-strain theory. The required rutting coefficients for the prediction model were determined through the laboratory rutting characterizations of the asphalt concrete layer materials. Within the limits of this study, a laboratory rutting prediction model of flexible pavement using repetitive axial loading test was presented. It is noted that the developed rutting prediction model simulates propery the behaviors of flexible pavement layer materials.

Evaluation of extension in service life and layer thickness reduction of stabilized flexible pavement

  • Nagrale, Prashant P.;Patil, Atulya
    • Advances in Computational Design
    • /
    • v.3 no.2
    • /
    • pp.201-212
    • /
    • 2018
  • Decrease in availability of suitable subbase and base course materials for highway construction leads to a search for economic method of converting locally available troublesome soil to suitable one for highway construction. Present study insights on evaluation of benefits of stabilization of subgrade soils in term of extension in service life (TBR) and layer thickness reduction (LTR). Laboratory investigation consisting of Atterberg limit, Compaction, California Bearing Ratio, unconfined compressive strength and triaxial shear strength tests were carried out on two types of soil for varying percentages of stabilizers. Vertical compressive strains at the top of unstabilized and stabilized subgrade soils were found out by elastoplastic finite element analysis using commercial software ANSYS. The values of vertical compressive strains at the top of unstabilized and stabilized subgrade, were further used to estimate layer thickness reduction or extension in service life of the pavement due to stabilization. Finite element modeling of the flexible pavement layered structure provides modern technology and sophisticated characterization of materials that can be accommodated in the analysis and enhances the reliability for the prediction of pavement response for improved design methodology. If the pavement section is kept same for unstabilized and stabilized subgrade soils, pavement resting on lime, fly ash and fiber stabilized subgrade soil B will have service life 2.84, 1.84 and 1.67 times than that of unstabilized pavement respectively. The flexible pavement resting on stabilized subgrade is beneficial in reducing the construction material. Actual savings would depend on the option exercised by the designer for reducing the thickness of an individual layer.