• Title/Summary/Keyword: Flexible manufacturing cell

Search Result 93, Processing Time 0.018 seconds

Future Prospect of Perovskite Solar Cells for Practical Applications (페로브스카이트 태양전지 안정성 개선을 위한 광활성층 연구 현황과 전망)

  • Song, Jae-Kwan;Kim, Do-Heyoung
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.1-20
    • /
    • 2020
  • Development of efficient methods for clean energy production became a critical issue to improve the quality of human lives. Solar cells is considered as one of the alternative solutions to resolve the issue. Although Si-based solar cells are only popularly utilized for practical applications, high manufacturing cost is considered as a serious drawback for further versatile applications. Thus, different types of are being investigated aiming to replace the Si-based solar cells. Recently, perovskite solar cells (PSC) are considered as a potential replacement for Si-based solar cells due to their low production cost, high power conversion efficiency, light weight and possibility of flexible device fabrication. Thus, we have reviewed the challenges of PSC faced with practical application, particularly on stability.

Improving the Efficiency of SnS Thin Film Solar Cells by Adjusting the Mg/(Mg+Zn) Ratio of Secondary Buffer Layer ZnMgO Thin Film (2차 버퍼층 ZnMgO 박막의 Mg/(Mg+Zn) 비율 조절을 통한 SnS 박막 태양전지 효율 향상)

  • Lee, Hyo Seok;Cho, Jae Yu;Youn, Sung-Min;Jeong, Chaehwan;Heo, Jaeyeong
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.566-572
    • /
    • 2020
  • In the recent years, thin film solar cells (TFSCs) have emerged as a viable replacement for crystalline silicon solar cells and offer a variety of choices, particularly in terms of synthesis processes and substrates (rigid or flexible, metal or insulator). Among the thin-film absorber materials, SnS has great potential for the manufacturing of low-cost TFSCs due to its suitable optical and electrical properties, non-toxic nature, and earth abundancy. However, the efficiency of SnS-based solar cells is found to be in the range of 1 ~ 4 % and remains far below those of CdTe-, CIGS-, and CZTSSe-based TFSCs. Aside from the improvement in the physical properties of absorber layer, enormous efforts have been focused on the development of suitable buffer layer for SnS-based solar cells. Herein, we investigate the device performance of SnS-based TFSCs by introducing double buffer layers, in which CdS is applied as first buffer layer and ZnMgO films is employed as second buffer layer. The effect of the composition ratio (Mg/(Mg+Zn)) of RF sputtered ZnMgO films on the device performance is studied. The structural and optical properties of ZnMgO films with various Mg/(Mg+Zn) ratios are also analyzed systemically. The fabricated SnS-based TFSCs with device structure of SLG/Mo/SnS/CdS/ZnMgO/AZO/Al exhibit a highest cell efficiency of 1.84 % along with open-circuit voltage of 0.302 V, short-circuit current density of 13.55 mA cm-2, and fill factor of 0.45 with an optimum Mg/(Mg + Zn) ratio of 0.02.

Ultrastructure and Metallothionein Expression in Rat Liver Treated with Di-(2-ethylhexyl)phthalate (Di-(2-ethylhexyl)phthalate에 의한 흰쥐 간세포 미세구조와 metallothionein 발현에 미치는 영향)

  • Kim, Da-Ham;Moon, Seung-Hoon;Lee, Mi-Young;Lee, Jong-Hwa;Park, Young-Hyun;Shin, Kil-Sang;Kim, Wan-Jong
    • Korean Journal of Environmental Biology
    • /
    • v.25 no.4
    • /
    • pp.289-296
    • /
    • 2007
  • Di-(ethyhexyl) phthalate (DEHP), commonly used as a plasticizer for manufacturing flexible vinyl products, has been the topic of extensive research, especially concerning endocrine disrupting properties. Metallothionein (MT) is a low molecular weight (6,000$\sim$7,000 Da), cysteine-rich (22$\sim$23%), metal-binding protein and is known to be induced by extrinsic factors such as chemical agents and stresses. Some of the known function of MT include detoxification of heavy metals and alkylating agents and neutralization of free radicals. Nonetheless, the definitive physiological function of MT are still unknown. This study was carried out to investigate the effects of DEHP on the ultrastructural changes and the expression of MT of the rat liver. The rats were orally intubated with either corn oil (experimental control) or 0.5 mg, 1.5 mg and 4.5 mg DEHP kg$^{-1}$ day$^{-1}$ in 0.5 mL of corn oil for 15 days before sacrificing and sampling. DEHP induced mild ultrastrctural changes of some cell organelles such as rough endoplasmic reticulum, mitochondria, lysosomes and peroxisomes in the rat liver treated with DEHP. In the respect of immunogold labelling and Western blotting, MT expression of the liver tissue was up-regulated by DEHP. In conclusion, DEHP has effects on the ultrastructures and hepatic function for MT expression in rat.