• Title/Summary/Keyword: Flexible cell

Search Result 425, Processing Time 0.03 seconds

Performance Improvement of Flexible Thin Film Si Solar Cells using Graphite Substrate (그라파이트 기판을 이용한 유연 박막 실리콘 태양전지 특성 향상)

  • Lim, Gyeong-yeol;Cho, Jun-sik;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.317-321
    • /
    • 2019
  • We investigated the characteristics of nano crystalline silicon(nc-Si) thin-film solar cells on graphite substrates. Amorphous silicon(a-Si) thin-film solar cells on graphite plates show low conversion efficiency due to high surface roughness, and many recombination by dangling bonds. In previous studies, we deposited barrier films by plasma enhanced chemical vapor deposition(PECVD) on graphite plate to reduce surface roughness and achieved ~7.8 % cell efficiency. In this study, we fabricated nc-Si thin film solar cell on graphite in order to increase the efficiency of solar cells. We achieved 8.45 % efficiency on graphite plate and applied this to nc-Si on graphite sheet for flexible solar cell applications. The characterization of the cell is performed with external quantum efficiency(EQE) and current density-voltage measurements(J-V). As a result, we obtain ~8.42 % cell efficiency in a flexible solar cell fabricated on a graphite sheet, which performance is similar to that of cells fabricated on graphite plates.

Evaluation of Results in Recent Flexible Solar Cell Research Trends via Network Analysis Method (네트워크 분석을 이용한 플렉시블 태양전지 최근 연구동향 분석)

  • Byun, Kisik;Lim, Jae Sung;Park, Jae Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.600-613
    • /
    • 2018
  • The purpose of this research was to introduce a network analysis method for analyzing the recent trend of the flexible solar cell using a scholarly database. Based on the five years from 2013 to 2017, we used centrality analysis of research papers via measurement of degree centrality, closeness centrality, and betweenness centrality. The results of network analysis show that cell has a centrality value above 0.8, which means that cell is connected with 80% of the total keywords, so it is recognized as the center of flexible solar cell research. The analysis results also indicate that perovskite and copper indium gallium diselenide (CuInGaSe2, or CIGS) are the center of the subgroup for cell. We recognize that the result refers to recent new technology called the CIGS/perovskite tandem solar cell. We hope that the network analysis method will be the appropriate and precise tool for technology and research planning via elaboration and optimization.

Wide Viewing Angle Flexible Color Liquid Crystal Display

  • Liu, Kang-Hung;Lin, Yan-Rung;Chang, Ku-Hsien;Liao, Chi-Chang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.357-360
    • /
    • 2005
  • A novel wide viewing angle flexible liquid crystal display will be demonstrated. The crossed matrix-type micro-cell structure was adopted in this design. The LC domains were divided into four different tilted directions by the combination effect of pixel fringe field and crossed matrix type micro-cell. It can create four domains without rubbing process and form the cell gap without spacer. For flexible color fabrication, a novel inkjet printing technology is adopted. This cost effective wide viewing angle color flexible LCD technology can be a good solution for high performance flexible LCD.

  • PDF

Explicit integration algorithm for fully flexible unit cell simulation with recursive thermostat chains (순환적으로 결합되는 정온기들을 갖는 $N{\sigma}T$ 분자동역학 전산모사에 적용한 외연적 적분기법)

  • Jung, Kwang-Sub;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.512-517
    • /
    • 2007
  • In the previous development of the recursive thermostat chained fully flexible cell molecular dynamics simulation, implicit time integration method such as generalized leapfrog integration is used. The implicit algorithm is very much complicated and not easy to show time reversibility because it is solved by the nonlinear iterative procedure. Thus we develop simple, explicit symplectic time integration formula for the recursive thermostat chained fully flexible unit cell simulation. Uniaxial tension test is performed to verify the present explicit algorithm. We check that the present simulation satisfies the ergodic hypothesis for various values of fictitious mass and coefficient of multiple thermostat system. The proposed method should be helpful to predict mechanical and thermal behavior of nano-scale structure.

  • PDF

Network-type Cell Layout in Cellular Flexible Assembly Systems (셀형유연조립시스템에서의 네트웍형 셀배치)

  • 노인규;최형호
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.39
    • /
    • pp.63-73
    • /
    • 1996
  • With the success of flexible manufacturing systems (FMSs), flexible assembly systems (FASs) have been developed to automate factories further. As in a cellular FMS, a cellular FAS is considered as the most flexible and feasible assembly system configuration Because of the differences between manufacturing and assembly operation, the logic of cell formation and cell layout between a FMS and a FAS is not the same. Since the time for assembly operation is usually relatively short, the transfer time is thus very crucial for the performance of assembly systems. Therefore in assembly systems it is important to reduce the transfer time by sequencing operations efficiently and arranging machines like the sequences. The network-type layout is not only feasible for the machine arrangement based on operation sequences, but it has also layout flexibility. Therefore it is a reasonable layout configuration for cellular FASs. This paper presents a method for the cell layout based on the network-type layout in a cellular FAS design.

  • PDF

An Integrated Shop Operation System for Multi-Cell Flexible Manufacturing Systems under Job Shop Environments (멀티 셀 유연생산환경을 위한 통합운용시스템)

  • Nam, Sung-Ho;Ryu, Kwang-Yeol;Shin, Jeong-Hoon;Kwon, Ki-Eok;Lee, Seok-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.386-394
    • /
    • 2012
  • Recent trends in the flexible manufacturing systems are morphing cell control for the shop-wide production operation system and providing the integrated operation and execution system together with vendor-specific FMC/FMS platform. In these requirements, the shop-floor level operation system plays a role of coordinating the control activity of each cell, and has to provide flexibility for the complexity of mixed operations of various cells. This paper suggests a system architecture for the mixed environments of multi-cells and job shop, its corresponding enabling technologies based on comparative studies with other related studies and commercialized systems. This approach includes a process definition model considering the integration with upper BOM-BOP and external service modules, and reconfigurable device-level interface which provides dynamic interconnections with machine tools and cell controllers. The function modules and their implementation results are also described to provide the feasibility of the proposed approaches as the flexible shop-floor operation system for the multi-cell environments.

Petri Net based Performance Evaluation of Manufacturing Cell (페트리 넷을 이용한 제조 셀의 성능평가)

  • Kim, Tai-Oun;Seo, Yoon-Ho;Sheen, Dong-Mok
    • IE interfaces
    • /
    • v.17 no.spc
    • /
    • pp.152-159
    • /
    • 2004
  • The Purpose of this paper is to propose performance evaluation schemes of flexible manufacturing cell using a generalized stochastic Petri net. In the competitive and global manufacturing environment, to evaluate the feasibility and manufacturability of a product in the product design stage is highly required. Through this process, all the possible problems which may occur in the manufacturing stage can be fixed in early stage. The scheme of generalized stochastic Petri net utilizing both immediate and exponential distributed transitions are applied to model a manufacturing cell with flexible machines, material handler, transporter and buffers. Performance analyses are performed based on behavioral, structural and quantitative properties. A flexible manufacturing cell is evaluated using a Petri net simulator.

Priority Scheduling for a Flexible Job Shop with a Reconfigurable Manufacturing Cell

  • Doh, Hyoung-Ho;Yu, Jae-Min;Kwon, Yong-Ju;Lee, Dong-Ho;Suh, Min-Suk
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.1
    • /
    • pp.11-18
    • /
    • 2016
  • This paper considers a scheduling problem in a flexible job shop with a reconfigurable manufacturing cell. The flexible job shop has both operation and routing flexibilities, which can be represented in the form of a multiple process plan, i.e. each part can be processed through alternative operations, each of which can be processed on alternative machines. The scheduling problem has three decision variables: (a) selecting operation/machine pairs for each part; (b) sequencing of parts to be fed into the reconfigurable manufacturing cell; and (c) sequencing of the parts assigned to each machine. Due to the reconfigurable manufacturing cell's ability of adjusting the capacity, functionality and flexibility to the desired levels, the priority scheduling approach is proposed in which the three decisions are made at the same time by combining operation/machine selection rules, input sequencing rules and part sequencing rules. To show the performances of various rule combinations, simulation experiments were done on various instances generated randomly using the experiences of the manufacturing experts, and the results are reported for the objectives of minimizing makespan, mean flow time and mean tardiness, respectively.

PDMS-based pixel-wall bonding technique for a flexible liquid crystal display (플렉서블 액정 디스플레이를 위한 PDMS 기반 pixel-wall bonding 기술)

  • Kim, Young-Hwan;Park, Hong-Gyu;Oh, Byeong-Yun;Kim, Byoung-Yong;Paek, Kyeong-Kap;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.42-42
    • /
    • 2008
  • Considerable attention has been focused on the applications of flexible liquid crystal (LC)-based displays because of their many potential advantages, such as portability, durability, light weight, thin packaging, flexibility, and low power consumption. To develop flexible LCDs that are capable of delivering high-quality moving images, like conventional glass-substrate LCDs, the LC device structure must have a stable alignment layer of LC molecules, concurrently support uniform cell gaps, and tightly bind two flexible substrates under external tension. However, stable LC molecular alignment has not been achieved because of the layerless LC alignment, and consequently high-quality images cannot be guaranteed. To solve these critical problems, we have proposed a PDMS pixel-wall based bonding method via the IB irradiation was developed for fasten the two substrates together strongly and maintain uniform cell gaps. The effect of the IB irradiation on PDMS with PI surface was also evaluated by side structure configuration and a result of x-ray photoelectron spectroscopic analysis of PDMS interlayer as a function of binder with substrates. large number of PDMS pixel-walls are tightly fastened to the surface of each flexible substrate and could maintain a constant cell gap between the LC molecules without using any other epoxy or polymer. To enhance the electro-optical performance of the LC device, we applied an alignment method that creates pretilt angle on the PI surface via ion beam irradiation. Using this approach, our flexible LCDs have a contrast ratio of 132:1 and a response time of about 15 ms, resulting in highly reliable electro-optical performance in the bent state, comparable to that of glass-substrate LCDs.

  • PDF