• Title/Summary/Keyword: Flexible antenna

Search Result 71, Processing Time 0.034 seconds

Flexible Electronics Devices for Smart Card Applications

  • Hou, Jack;Kimball, Bob;Vincent, Bryan;Ratcliffe, Bill;Mahan, Mike
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.75-77
    • /
    • 2008
  • Flexible electronics devices such as plastic display, thin film battery, membrane switch, organic memory for smart card applications will be presented. The performance and power consumption of various display technologies will be compared for OTP requirement in smart cards. Wireless power transmission by RF coupling through an antenna provides a potential power solution to smart cards. Finally, the general trend of smart card future developments will be discussed.

  • PDF

A Triple Band Deep-Tissue Antenna for Biomedical Implants (심부 조직 인체 삽입용 세 가지 밴드 안테나)

  • Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.383-386
    • /
    • 2017
  • In this study, we introduce a triple-band flexible implantable antenna that is tuned by using a ground slot in three specific bands, namely Medical Implanted Communication Service (MICS: 402-405 MHz) for telemetry, the midfield band (lower gigahertz: 1.45-1.6 GHz) for Wireless Power Transfer (WPT), and the Industrial, Scientific and Medical band (ISM: 2.4-2.45 GHz) for power conservation. This antenna is wrapped inside a printed 3D capsule prototype to show its applicability in different implantable or ingestible devices. The telemetry performance of the proposed antenna was simulated and measured by using a porcine heart. From the simulation and measurement, we found that use of a ground slot in the implantable antenna can improve the antenna performance and can also reduce the Specific Absorption Rate (SAR).

Intention-awareness Communication System for Future Mobile Terminal with Flexible Shape Change (가변 형태의 미래형 단말기를 위한 의도인식 통신시스템)

  • Cho, Myeon-Gyun;Yoon, Dal-Hwan;Choi, Hyo-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2720-2728
    • /
    • 2012
  • Recently flexible mobile terminals which can freely change the shape of their device are coming out with the development of the flexible display, high capacity memory and system integration technology. The display and the antenna configuration of the future terminals will be altered according to the QoS (quality of service) and the communication environment of users. In particular, we present the new emergence of a multimedia language for human and system to communicate over subjective concepts, intention of users. The intension of users is expressed by changing the shape of their mobile terminal. In addition, antenna configuration is also related to shape of terminal and QoS of users. Therefore, we set up a specific usage scenarios for future mobile terminals and propose an adaptive MIMO (multiple-input multiple-output) schemes that can maximize channel capacity and fit to QoS of users simultaneously.

Antenna sensor skin for fatigue crack detection and monitoring

  • Deshmukh, Srikar;Xu, Xiang;Mohammad, Irshad;Huang, Haiying
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.93-105
    • /
    • 2011
  • This paper presents a flexible low-profile antenna sensor for fatigue crack detection and monitoring. The sensor was inspired by the sense of pain in bio-systems as a protection mechanism. Because the antenna sensor does not need wiring for power supply or data transmission, it is an ideal candidate as sensing elements for the implementation of engineering sensor skins with a dense sensor distribution. Based on the principle of microstrip patch antenna, the antenna sensor is essentially an electromagnetic cavity that radiates at certain resonant frequencies. By implementing a metallic structure as the ground plane of the antenna sensor, crack development in the metallic structure due to fatigue loading can be detected from the resonant frequency shift of the antenna sensor. A monostatic microwave radar system was developed to interrogate the antenna sensor remotely. Fabrication and characterization of the antenna sensor for crack monitoring as well as the implementation of the remote interrogation system are presented.

Thermal Characteristics Investigation of Spaceborne Mesh Antenna with Dual-parabolic Surfaces (이중막 구조를 적용한 우주용 전개형 메쉬 안테나의 열적 특성 분석)

  • Kim, Hye-In;Chae, Bong-Geon;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.86-93
    • /
    • 2022
  • Generally, a deployable solar panel is used primarily to achieve sufficient power output to perform the mission. However, temperature distribution on the antenna reflector may increase due to the shading effect induced by the presence of the deployable solar panels. Appropriate thermal design is critical to minimize the thermal deformation of the mesh antenna reflector in harsh on-orbit thermal environments to ensure remote frequency (RF) performance. In this paper, we proposed a dual-surface primary reflector consisting of a mesh antenna and a flexible fabric membrane sheet. This design strategy can contribute to thermal stabilization by using a flexible solar panel on the rear side of membrane sheet to reduce the temperature distribution caused by the deployable solar panel. The effectiveness of the mesh antenna design strategy investigates through on-orbit thermal analysis.

A Wide Band Antenna Design using the Synthesis of Independent Dual Resonance Modes for Manpack SDR(Software Defined Radio) (독립적인 이중 공진 모드 합성을 이용한 광대역 SDR 무전기 안테나 설계)

  • Yu, Byunggil;Dong, Moo-Ho;Cho, Ji-Haeng;Han, Sung-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.57-63
    • /
    • 2014
  • In this paper, we have proposed a wide band antenna for manpack SDR(Software Defined Radio). The proposed antenna consists of feeding post, flexible gooseneck and two radiating elements composed of a upper and lower radiators. The upper radiator has a longer electrical length than the lower radiator in order to operate in the lower frequency. Also, the resonant frequency and impedance characteristics of the antenna can be adjusted independently for two radiators. Therefore, the proposed antenna can be achieved wide impedance bandwidth by the combination of two independent resonance modes. To analyze the characteristics of the antenna in the design process is employed the equivalent circuit theory and EM(Electro-Magnetic) simulation. The measurement results show that the proposed antenna have the sufficient wide bandwidth, above -3.4dBi of the gain and fairly good radiation pattern over the wide bandwidth.

Design of a Flexible Planar RFID Tag Antenna with Low Performance Degradation from Nearby Target Objects

  • Choo, Jae-Yul;Ryoo, Jeong-Ki;Choo, Ho-Sung
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.1
    • /
    • pp.1-4
    • /
    • 2011
  • In this letter, we propose a novel tag antenna that has low performance degradation with nearby dielectric material. We obtained a stable reading performance and a broad matching bandwidth on nearby dielectric materials by employing a T-matching network with thick line width and capacitively slot-loaded arms. We then built the proposed antenna and measured the tag sensitivity to examine the reading characteristics with nearby dielectric materials. The measured results clearly demonstrate stable tag sensitivity with various nearby dielectric materials, such as foam, acrylic-plastic, glass, and ceramic plates. To more closely observe the antenna characteristics with nearby dielectric materials, we also examined the impedance variation and surface current distribution with respect to the dielectric constant of nearby target objects, which ranged from $1{\times}{\varepsilon}_0$ to $16{\times}{\varepsilon}_0$.

A Study on Wearable GPS Antenna Integrated into Garment (의복에 실장되는 웨어러블 GPS 안테나에 대한 연구)

  • Park, Dong-Kook
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.623-627
    • /
    • 2014
  • In recent years, wireless communication technologies in human body have received an increasing attention and the research on an antenna that can be worn also has been actively conducted. In this paper, an wearable antenna that can receive GPS signal frequency is proposed. The antenna was manufactured by using a copper polyester fabric with thickness of 0.08mm as a radiator and a ground plate, and a goatskin with thickness of 0.7mm as dielectric substrate. Cutting edges placed in diagonal direction of square patch in order to obtain a circular polarization characteristic, and the conductive cloth and leather was laminated by using a conductive epoxy. First, goatskin dielectric constant was obtained through the simulation and measurement of resonance frequency of the three square patch antennas with different size. On the basis of the results, an antenna operating in the GPS band was designed and the performance of the antenna was validated by making the experiment. The change of the characteristic of the antenna that is located on the shoulder parts of the clothing and wearing person were measured. And it was confirmed that the reception sensitivity has a similar level as compared to the commercially produced ceramic GPS antenna.

CPW-fed UWB Monopole Paper Antenna (CPW 급전 UWB 모노폴 종이 안테나)

  • Park, Dong-Kook
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.607-612
    • /
    • 2021
  • This paper presents a novel CPW-fed UWB monopole paper antenna made by paper and copper tape. Through the simulation, the optimized antenna design parameters were obtained, and an antenna having an omni-directional radiation pattern and a gain of 2.2 dBi or more in the UWB frequency band of 3.1-10.6 GHz was designed. The antenna was manufactured using general A4 paper and copper tape, and the measurement result satisfies the return loss of -10dB or less in the UWB frequency band and confirm that the return loss characteristic was maintained even when the antenna plane was bent by 3 mm in the longitudinal direction. The proposed antenna is a wearable device that can provide services in the UWB band, and can be manufactured inexpensively by printing it with a conductive print on paper. So it can be used as a wearable antenna for UWB communication in various application fields such as logistics and disposable terminals.

A Study on the Ka-Band Satellite Output Power Control Technology (Ka 대역 위성 출력 전력 제어 기술 연구)

  • Shin, Dong-Hwan;Yun, So-Hyeun;Moon, Seong-Mo;Lee, Hong-Yeol;Eom, Man-Seok;Yom, In-Bok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.11
    • /
    • pp.1072-1081
    • /
    • 2012
  • For Ka-band satellite communication system, a new flexible payload technologies which can compensate rain attenuation have to be developed. The Ka-band satellite output power control technology enables to adjust downlink output power of satellite payload in Ka-band (19.8 ~ 22.2 GHz). In this paper, we introduce multi-beam antenna with multi-port amplifiers for Ka-band flexible output power allocation system. We have designed multi-beam antenna with array-fed reflector to form 8 beams on the Korean Peninsula. The target EIRP per beam is more than 59 dBW. The system is designed to present 6 dB boost beams for rainfall areas. Individual beams were optimized by the excited amplitude and phase of feed elements of the feed cluster. The multi-port amplifier(MPA) is one of effective approaches for flexible power allocation in combination with multi-beam antenna. In case of using MPA in multi-beam system, the inter-port isolation characteristic of MPA is important parameter to avoid interference among the output ports. In this paper, we propose a new MPA structure that consists of two $4{\times}4$ Buttler matrixes and phase/amplitude controllable power amplifier modules.