• Title/Summary/Keyword: Flexible Tactile Sensor

Search Result 53, Processing Time 0.017 seconds

Display Technologies for Immersive Devices and Electronic Skin (디스플레이 현황과 발전방향 -실감 및 스킨 기기로의 확대)

  • Park, Y.J.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.2
    • /
    • pp.10-18
    • /
    • 2019
  • Since the introduction of CRT(Cathode Ray Tube) in the 1950s, display technologies have been developed continuously. Flat panel displays such as PDP(Plasma Display Panel) and LCD(Liquid Crystal Display) were commercialized in the late 1990s, and OLED(Organic Light Emitting Diodes) and Micro-LED(Micro-Light Emitting Diodes) are now being developed and are becoming widespread. In the future, we expect to develop ultra-realistic, flexible, embedded sensor displays. Ultra-realistic display can be applied to AR/VR(Augmented Reality/Virtual Reality) devices and spatial light modulators for holography. The sensor-embedded display can be applied to robots; electronic skin; and security devices, including iris recognition sensors, fingerprint recognition sensors, and tactile sensors. AR/VR technology must be developed to meet technical requirements such as viewing angle, resolution, and refresh rate. Holography requires optical modulation technology that can significantly improve resolution, viewing angle, and modulation method to enable wide-view and high-quality hologram stereoscopic images. For electronic skin, stable mass production technology, large-area arrays, and system integration technologies should be developed.

Force holding control of a finger using piezoelectric actuators

  • Jiang, Z.W.;Chonan, S.;Koseki, M;Chung, T.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.202-207
    • /
    • 1993
  • A theoretical and experimental study is presented for the force holding control of a miniature robotic ringer which is driven by a pair of piezoelectric unimorph cells. In the theoretical analysis, one finger is modeled as a flexible cantilever with a tactile force sensor at the tip and the mate of the finger is a solid beam supposed with sufficient stiffness. Further, the force sensor is modeled by a one-degree-of-freedom, mass-spring system and the output of sensor is then described by the sensor stiffness multiplied by the relative displacement. The problem investigated in this paper is that two typical holding tasks of the human finger are picked up and applied to the robotic finger. One is the work holding a stationary object with a prescribed, time-varying force and the other one is to keep the contacted force constant even if the object is in motion. The simple PID feedback control scheme is used to control the minute gripping force of order 0.01 Newton. It is shown both experimentally and theoretically that the artificial finger with the piezoelectric actuator works well in the minute force holding of the tiny object.

  • PDF

An Intelligence Embedding Quadruped Pet Robot with Sensor Fusion (센서 퓨전을 통한 인공지능 4족 보행 애완용 로봇)

  • Lee Lae-Kyoung;Park Soo-Min;Kim Hyung-Chul;Kwon Yong-Kwan;Kang Suk-Hee;Choi Byoung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.314-321
    • /
    • 2005
  • In this paper an intelligence embedding quadruped pet robot is described. It has 15 degrees of freedom and consists of various sensors such as CMOS image, voice recognition and sound localization, inclinometer, thermistor, real-time clock, tactile touch, PIR and IR to allows owners to interact with pet robot according to human's intention as well as the original features of pet animals. The architecture is flexible and adopts various embedded processors for handling sensors to provide modular structure. The pet robot is also used for additional purpose such like security, gaming visual tracking, and research platform. It is possible to generate various actions and behaviors and to download voice or music files to maintain a close relation of users. With cost-effective sensor, the pet robot is able to find its recharge station and recharge itself when its battery runs low. To facilitate programming of the robot, we support several development environments. Therefore, the developed system is a low-cost programmable entertainment robot platform.