• Title/Summary/Keyword: Flavin mononucleotide

Search Result 11, Processing Time 0.021 seconds

Flow cytometry of cell-cycle on Flavin mononucleotide (1,4-butanediamine) Pt(II) Complex and Cisplatin and Their Biochemical Analysis of Nephrotoxicity in ICR Mice (Flavin mononucleotide (1,4-butanediamine) Pt(II) Complex와 Cisplatin의 세포주기에 대한 유세포 분석 및 ICR계 생쥐에서의 신장독성에 대한 생화학적 분석)

  • 권영이;황규자;김안근;김국환;김원규;안동춘
    • YAKHAK HOEJI
    • /
    • v.44 no.2
    • /
    • pp.149-154
    • /
    • 2000
  • Flavin mononucleotide (1,4-butanediamine) Pt(II) complex (7FMN) was synthesized and screened anticancer activity [J. Pharm. Soc. Korea 43(6),762-770 (1999)]. 7FMN have good water solubility and moderate anticancer activiy In this paper cell-cycle specificity and nephrotoxicity were studied. Interaction of DNA with cisplatin and synthesized 7FMN was analyzed by flow cytometry and showed G2 arrest in L1210 cell line. It means that cell-cycle on L1210 was inhibit in S phase by cisplatin and 7FMN. In order to biochemically analyze nephrotoxicity of cisplatin and 7FMN, after injecting each agent intraperitoneally, blood was exsanguinated after 6 hours, 1 day, 3 days and 7 days, respectively. Then, serum was separated from the blood. The serum level of BUN, creatinine and uric acid in cisplatin and 7FMN administated mice (25~35 g, ICR strain, a dose each 8,12 and 16 times of the $IC_{50}$/ value, cisplatin; 7 times) were determined by autochemistry analyzer. In cisplatinadministered mice group, BUN level was elevated than normal control group at 3rd day and repaired at 7th day. In 7FMN administrated group was not elevated. Creatinine and uric acid level were no difference with the normal control group. Therefore synthesized 7FMN is less toxic than cisplatin in nephrotoxiciaty.

  • PDF

Synthesis of Pt(II) Complexes containing Flavin mononucleotide as Leaving Ligand and their Anticancer Activity (Flavin mononucleotide를 탈리기로한 백금 (II) 착체의 합성과 그 항암활성)

  • 권영이;황규자
    • YAKHAK HOEJI
    • /
    • v.43 no.6
    • /
    • pp.762-770
    • /
    • 1999
  • A series of vitamin-containing Pt(II) complexes of the type [Pt (FMN) (L)] (FMN=flavin mononucleotide, L=ethylenediamine, 1,3-propanediamine, 1,4-bu-tanediamine) was synthesizd and characterized by IR, electronic absorption, elemental analysis and FAB=Mass. The coordination sites of FMN to Pt(II) ions were determined to be N(5) and O(6) with resultant chelate ring formation. Theses compounds have much better water solubility (30-35 mg/ml) than cisplatin (1 mg/ml). The anticancer activity of this vitamin-containing Pt(II) series was investigated by MTT assay against mouse and human leukemia cell lines in vitro. Among these compounds, FMN (1,4-butanediamine) Pt(II) having seven-membered ring structure as amine ligand showed moderate anticancer activity.

  • PDF

Backbone Cyclization of Flavin Mononucleotide-Based Fluorescent Protein Increases Fluorescence and Stability

  • Tingting Lin;Yuanyuan Ge;Qing Gao;Di Zhang;Xiaofeng Chen;Yafang Hu;Jun Fan
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1681-1691
    • /
    • 2023
  • Flavin mononucleotide-binding proteins or domains emit cyan-green fluorescence under aerobic and anaerobic conditions, but relatively low fluorescence and less thermostability limit their application as reporters. In this work, we incorporated the codon-optimized fluorescent protein from Chlamydomonas reinhardtii with two different linkers independently into the redox-responsive split intein construct, overexpressed the precursors in hyperoxic Escherichia coli SHuffle T7 strain, and cyclized the target proteins in vitro in the presence of the reducing agent. Compared with the purified linear protein, the cyclic protein with the short linker displayed enhanced fluorescence. In contrast, cyclized protein with incorporation of the long linker including the myc-tag and human rhinovirus 3C protease cleavable sequence emitted slightly increased fluorescence compared with the protein linearized with the protease cleavage. The cyclic protein with the short linker also exhibited increased thermal stability and exopeptidase resistance. Moreover, induction of the target proteins in an oxygen-deficient culture rendered fluorescent E. coli BL21 (DE3) cells brighter than those overexpressing the linear construct. Thus, the cyclic reporter can hopefully be used in certain thermophilic anaerobes.

A Rat Liver Lysosomal Membrane Flavin-Adenine Dinucleotide Phosphohydrolase

  • Shin, Hae-Ja;Lim, Woon-Ki
    • BMB Reports
    • /
    • v.29 no.3
    • /
    • pp.253-260
    • /
    • 1996
  • An enzyme that hydrolyzes flavin-adenine dinucleotide (FAD) was found to be present in rat liver lysosomal membrane prepared from Triton WR-1339 filled lysosomes (tritosomes) purified by flotation on sucrose. This FAD phosphohydrolase (FADase) exhibited optimal activity at pH 8.5 and had an apparent Km of approximately 3.3 mM. The activity was decreased 50~70% by dialysis against EDTA and this was restored by $Zn^{2+}$, $Mg^{+2}$, $Hg^{+2}$, and $Ca^{+2}$ ions inhibited the enzyme, but $F^-$ and molybdate had no effect. The enzyme was also inhibited by p-chloromercuribenzoate (pCMB), reduced glutathione and other thiols, cyanide, and ascorbate. The presence of ATP, ADP, AMP. ${\alpha}-{\beta}-methylene$ ATP, AMP-p-nitrophenyl phosphate (PNP), GMP, and coenzyme A (CoA) decreased the activity on FAD, but pyrimidine nucleotides, adenosine, adenine, or $NAD^+$ were without effect. Phosphate stimulated the activity slightly. FAD phosphohydrolase activity was separated from ATPase and inorganic pyrophosphatase activities by solubilization with detergents and polyacrylamide gel electrophoresis and by linear sucrose density gradient centrifugation suggesting that the enzyme is different from ATPase, inorganic pyrophosphatase, and soluble lysosomal FAD pyrophosphatase. Paper chromatography showed that FAD was hydrolyzed to flavin mononucleotide (FMN) and AMP which were further hydrolyzed to riboflavin and AMP by phosphatases known to be present in lysosomal membranes. Incubation of the intact Iysosomes with pronase showed that the active site of FAD phosphohydrolase must be oriented to the cytosol. The FAD hydrolyzing activity was detected in Golgi, microsome, and plasma membrane, but not in mitochondria or soluble lysosomal preparations.

  • PDF

Liquid Chromatography-Tandem Mass Spectrometry Analysis of Riboflavin in Beagle Dog Plasma for Pharmacokinetic Studies

  • Jeong, Hyeon Myeong;Shin, Beom Soo;Shin, Soyoung
    • Mass Spectrometry Letters
    • /
    • v.11 no.1
    • /
    • pp.10-14
    • /
    • 2020
  • Riboflavin is a water-soluble vitamin, which serves as a precursor to flavin mononucleotide and flavin adenine dinucleotide. This study aimed to develop a simple and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis for the quantification of riboflavin in the Beagle dog plasma. This method utilized simple protein precipitation with acetonitrile and 13C4, 15N2-riboflavin was used as an internal standard (IS). For chromatographic separation, a hydrophilic interaction liquid chromatography (HILIC) column was used with gradient elution. The mobile phase consisted of 0.1% (v/v) aqueous formic acid with 10 mM ammonium formate and acetonitrile with 0.1% (v/v) formic acid. Since riboflavin is an endogenous compound, 4% bovine serum albumin in phosphate buffered saline was used as a surrogate matrix to prepare the calibration curve. The quantification limit for riboflavin in the Beagle dog plasma was 5 ng/mL. The method was fully validated for its specificity, sensitivity, accuracy and precision, recovery, and stability according to the US FDA guidance. The developed LC-MS/MS method may be useful for the in vivo pharmacokinetic studies of riboflavin.

Ferric Reductase Activity of the ArsH Protein from Acidithiobacillus ferrooxidans

  • Mo, Hongyu;Chen, Qian;Du, Juan;Tang, Lin;Qin, Fang;Miao, Bo;Wu, Xueling;Zeng, Jia
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.464-469
    • /
    • 2011
  • The arsH gene is one of the arsenic resistance system in bacteria and eukaryotes. The ArsH protein was annotated as a NADPH-dependent flavin mononucleotide (FMN) reductase with unknown biological function. Here we report for the first time that the ArsH protein showed high ferric reductase activity. Glu104 was an essential residue for maintaining the stability of the FMN cofactor. The ArsH protein may perform an important role for cytosolic ferric iron assimilation in vivo.

A New-Generation Fluorescent-Based Metal Sensor - iLOV Protein

  • Ravikumar, Yuvaraj;Nadarajan, Saravanan Prabhu;Lee, Chong-Soon;Rhee, Jin-Kyu;Yun, Hyungdon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.503-510
    • /
    • 2015
  • The iLOV protein belongs to a family of blue-light photoreceptor proteins containing a light-oxygen-voltage sensing domain with a noncovalently bound flavin mononucleotide (FMN) as its chromophore. Owing to advantages such as its small size, oxygen-independent nature, and pH stability, iLOV is an ideal candidate over other reporter fluorescent proteins such as GFP and DsRed. Here, for the first time, we describe the feasibility of applying LOV domain-based fluorescent iLOV as a metal sensor by measuring the fluorescence quenching of a protein with respect to the concentration of metal ions. In the present study, we demonstrated the inherent copper sensing property of the iLOV protein and identified the possible amino acids responsible for metal binding. The fluorescence quenching upon exposure to Cu2+ was highly sensitive and exhibited reversibility upon the addition of the metal chelator EDTA. The copper binding constant was found to be 4.72 ± 0.84 µM. In addition, Cu2+-bound iLOV showed high fluorescence quenching at near physiological pH. Further computational analysis yielded a better insight into understanding the possible amino acids responsible for Cu2+ binding with the iLOV protein.

FMN-Based Fluorescent Proteins as Heavy Metal Sensors Against Mercury Ions

  • Ravikumar, Yuvaraj;Nadarajan, Saravanan Prabhu;Lee, Chong-Soon;Jung, Seunho;Bae, Dong-Ho;Yun, Hyungdon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.530-539
    • /
    • 2016
  • Bacterial light-oxygen-voltage-sensing photoreceptor-derived flavin mononucleotide (FMN)-based fluorescent proteins act as a promising distinct class of fluorescent proteins utilized for various biomedical and biotechnological applications. The key property of its independency towards oxygen for its chromophore maturation has greatly helped this protein to outperform the other fluorescent proteins such as GFP and DsRed for anaerobic applications. Here, we describe the feasibility of FMN-containing fluorescent protein FbFP as a metal-sensing probe by measuring the fluorescence emission changes of a protein with respect to the concentration of metal ions. In the present study, we demonstrated the mercury-sensing ability of FbFP protein and the possible amino acids responsible for metal binding. A ratiometric approach was employed here in order to exploit the fluorescence changes observed at two different emission maxima with respect to Hg2+ at micromolar concentration. The engineered variant FbFPC56I showed high sensitivity towards Hg2+ and followed a good linear relationship from 0.1 to 3 μM of Hg2+. Thus, further engineering with a rational approach would enable the FbFP to be developed as a novel and highly selective and sensitive biosensor for other toxic heavy metal ions as well.