• Title/Summary/Keyword: Flavin

Search Result 92, Processing Time 0.031 seconds

Biochemical Assessment of Vitamin $B_{1},\;B_{2}$ and $B_{6}$ Nutriture by Coenzyme Activation on Erythrocyte Enzymes (적혈구(赤血球) 효소활성화(酵素活性化)에 의(依)한 비타민 $B_{1}\;B_{2}$$B_{6}$ 영양상태(營養狀態)의 생화학적(生化學的) 평가(評價))

  • Tchai, Bum-Suk
    • Journal of Nutrition and Health
    • /
    • v.10 no.4
    • /
    • pp.24-32
    • /
    • 1977
  • It was attempted in this study to assess the vitamin $B_{1},\;B_{2}$, and $B_6$ status in tissue by determination of erythrocyte transketolase (TK), glutathione reductase (GR), and aspartate aminotransferase (AST) activities, and their activation by their respective coenzymes, thiamine pyrophosphate, flavin-adenine dinucleotide, and pyridoxal-5-phosphate. The activities of erythrocyte enzymes were stable for more than 30 days when erythrocyte had been stored at $-20^{\circ}C$ and affirmed that the enzyme activities were more stable in the case of deep frozen sotrage of erythrocytes rather than hemolysates. The assay procedures involving ultraviolet kinetic analysis with continuous monitoring for each of enzymes have good within-batch and between-batch precisions and will be avalable in the routine laboratories for the nutritional and clinical surveys. Activity coefficient of TK, GR, and AST was studied in healthy medical students (fifteen men and twelve women, between 21 and 30 years old) on an unrestricted diet. The mean activity coefficient of TK, GR, and AST were 1.18, 1.35, and 2.01 for men, and 1.14, 1.33, and 1.83 for women, respectively. And the upper limit of normal (mean+2SD) were 1.52, 1.69, and 2.61 for men, and 1.50, 1.61, and 2.37 for women, respectively.

  • PDF

A compound heterozygous mutation in the FMO3 gene: the first pediatric case causes fish odor syndrome in Korea

  • Kim, Ji Hyun;Cho, Sung Min;Chae, Jong-Hee
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.3
    • /
    • pp.94-97
    • /
    • 2017
  • Trimethylaminuria (TMAuria), known as "fish odor syndrome," is a congenital metabolic disorder characterized by an odor resembling that of rotting fish. This odor is caused by the secretion of trimethylamine (TMA) in the breath, sweat, and body secretions and the excretion of TMA along with urine. TMAuria is an autosomal recessive disorder caused by mutations in flavin-containing monooxygenase 3 (FMO3). Most TMAuria cases are caused by missense mutations, but nonsense mutations have also been reported in these cases. Here, we describe the identification of a novel FMO3 gene mutation in a patient with TMAuria and her family. A 3-year-old girl presented with a strong corporal odor after ingesting fish. Genomic DNA sequence analysis revealed that she had compound heterozygous FMO3 mutations; One mutation was the missense mutation p.Val158Ile in exon 3, and the other was a novel nonsense mutation, p.Ser364X, in exon 7 of the FMO3 gene. Familial genetic analyses showed that the p.Val158Ile mutation was derived from the same allele in the father, and the p.Ser364X mutation was derived from the mother. This is the first description of the p.Ser364X mutation, and the first report of a Korean patient with TMAuria caused by novel compound heterozygous mutations.

Characterization of Trichloroethylene and Phenol Degradation by Acinetobaeter sp. T5-7 (Acinetobacter sp. T5-7에 의한 Phenol과 Trichloroethylene 분해특성)

  • Hong, Sung-Yong;Lee, Suk-Hee;Lee, Jung-Hae;Ha, Ji-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.3
    • /
    • pp.255-262
    • /
    • 1995
  • Intact cells of Acinetobacter sp. T5-7 completely degraded trichloroethylene (TCE) following growth with phenol. This strain could grow on at least eleven aromatic compounds, e.g., benzaldehyde, benzene, benzoate, benzylalochol, catechol, caffeic acid, 2.4-D, p-hydroxybenzoate, phenol, protocatechuate and salicylate, and did grow on alkane, such as octane. But except phenol, other aromatic compounds did not induced TCE degradation. Phenol biotransformation products, catechol was identified in the culture media. However, catechol-induced cells did not degrade TCE. So we assumed that phenol hydroxylase was responsible for the degradation of TCE. The isolate T5-7 showed growth in MM2 medium containing sodium lactate and catechol rather than phenol, but did not display phenol hydroxyalse activity, suggesting induction of enzyme synthesis by phenol. Phenol hydroxylase activity was independent of added NADH and flavin adenine dinucleotide but was dependent on NADPH addition. Degradation of phenol produced catechols which are then cleaved by meta-fission. We identified catechol-2.3-dioxygenase by active staining of polyacrylamide gel.

  • PDF

An FMN-containing NADH-quinone reductase from streptomyces sp (An FMN-Containing NADH-Quinone Reductase from Streptomyces sp.)

  • Youn, Hong-Duk;Lee, Jin-Won;Youn, Hwan;Lee, Jeong-Kug;Hah, Yung-Chil;Kang, Sa-Ouk
    • Journal of Microbiology
    • /
    • v.34 no.2
    • /
    • pp.206-213
    • /
    • 1996
  • NADH-quinone reductase was purified 22-fold from the cytosolic fraction of Streptomyces sp. Imsnu-1 to apparent hemogenity, with an overall yield of 9%, by the purification procedure consisting of ammonium, sulfate precipitation and DEAE Sephacryl S-200 and DEAE 5 PW chromatographies. Thes molecular mass of the enzyme determined by gel filtration chromatography was found to be 110 kDa. SDS-PAGE revealed that the enzyme consists of two sugunits with a molecular mass of 54 kDa. The enzyme contained 1 mol of FMN per subunit as a cofactor. The $A_{272}$ A$_{457}$ ratio was 6.14 and the molar extinction coefficients were calculated to be 20, 800 and 25, 400M$^{-1}$ $cm^{-1}$ / AT 349 AND 457 nm, respectively. The N-terminal sequence of the enzyme contained the highly conserved fingerprint of ADP-binding domain. The enzyme used NADH as an electron donor and various quinones as electron acceptors. Cytochrome c was practically inactive. Air-stable flavin semiquinone was produced by the addition of NADH to the enzyme. Also, naphthosemiquinone was detected in the reaction mixture containing the enzyme.

  • PDF

Studies on Xanthine Oxidase from Bovine Thyroid Glands -[Part 2] Composition and Some Properties- (소의 갑상선에 있는 크산친 옥시다아제에 관한연구 [제2보] 효소의 조성과 특성-)

  • Lee, Hyo-Sa
    • Applied Biological Chemistry
    • /
    • v.21 no.3
    • /
    • pp.137-143
    • /
    • 1978
  • Xanthine oxidase from bovine thyroid glands was found to contain FAD, molybdenum and iron in a ratio 1:0. 36:1. 6. The molecular weight of the thyroid enzyme was similar to that of the milk enzyme when estimated by gel filtration and polyacrylamide gel electrophoresis. The optimum pH for the enzyme activity was 7.8. The pH of the isoelectric point was determined to be 6.2 by electrofocusing. Sodium dodecyl sulfatepolyacrylamide gel electrophoresis experiment indicated that the enzyme was dissociated into subunits and that the molecular weight for the smallest subunit was 65,000 daltons. Absorption spectra were dissimilar between milk and thyroid xanthine oxidase.

  • PDF

A New-Generation Fluorescent-Based Metal Sensor - iLOV Protein

  • Ravikumar, Yuvaraj;Nadarajan, Saravanan Prabhu;Lee, Chong-Soon;Rhee, Jin-Kyu;Yun, Hyungdon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.503-510
    • /
    • 2015
  • The iLOV protein belongs to a family of blue-light photoreceptor proteins containing a light-oxygen-voltage sensing domain with a noncovalently bound flavin mononucleotide (FMN) as its chromophore. Owing to advantages such as its small size, oxygen-independent nature, and pH stability, iLOV is an ideal candidate over other reporter fluorescent proteins such as GFP and DsRed. Here, for the first time, we describe the feasibility of applying LOV domain-based fluorescent iLOV as a metal sensor by measuring the fluorescence quenching of a protein with respect to the concentration of metal ions. In the present study, we demonstrated the inherent copper sensing property of the iLOV protein and identified the possible amino acids responsible for metal binding. The fluorescence quenching upon exposure to Cu2+ was highly sensitive and exhibited reversibility upon the addition of the metal chelator EDTA. The copper binding constant was found to be 4.72 ± 0.84 µM. In addition, Cu2+-bound iLOV showed high fluorescence quenching at near physiological pH. Further computational analysis yielded a better insight into understanding the possible amino acids responsible for Cu2+ binding with the iLOV protein.

Phytochemical Screening, Isolation, Characterization of Bioactive and Biological Activity of Bungkang, (Syzygium polyanthum) Root-bark Essential Oil

  • Umaru, Isaac John;Umaru, Kerenhappuch I.;Umaru, Hauwa A.
    • The Korean Journal of Food & Health Convergence
    • /
    • v.6 no.3
    • /
    • pp.5-21
    • /
    • 2020
  • Bungkang (Syzygium polyanthum) is a medium to tall plant which produces medicinal root-bark, the plant is normally found along inland river bank and produces small white flowers and fruits. Essential oils are among the most interesting components of the plant extracts consisting mostly of monoterpenoid or sesquiterpenoids. They are used as therapeutic agents in ethno, conventional, and complementary alternative medicines. Investigation and evaluation of the essential oil of Syzygium polyanthum as well as the antibacterial, antioxidant and antifungal activity was ascertained. The experiment was performed. 100 chemical constituents were obtained and two pure compound was isolated as Eugenol (1) and Farnesol (2). Significant growth inhibition of Staphylococcus aureus, (ATCCⓒ25923) Klebsiellia pneumonia (ATCCⓒ19155), Salmonella typhi (ATCCⓒ14028) and Escherichia coli (ATCC©25922) and the fungal strains Aspergillus flavin, Aspergillus niger, Candida, tropicalis, and Fusarium oxysporium was observed from the essential oil at concentration of 500 ㎍/mL. Antioxidant potential was observed to be strong of 18.42 ㎍/mL when compared to the control of 15.23 ㎍/mL. The result indicated that the oil obtained from root-bark of Syzygium polyanthum can be considered as an agent for antioxidant, antibacterial and antifungal in pharmaceutical food and cosmetic industries trails.

Effects of the gold nanoparticles including different thiol functional groups on the performances of glucose-oxidase-based glucose sensing devices

  • Christwardana, Marcelinus;Chung, Yongjin;Tannia, Daniel Chris;Kwon, Yongchai
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2421-2429
    • /
    • 2018
  • Thiol-based self-assembled anchor linked to glucose oxidase (GOx) and gold nanoparticle (GNP) cluster is suggested to enhance the performance of glucose biosensor. By the adoption of thiol-based anchors, the activity of biocatalyst consisting of GOx, GNP, polyethyleneimine (PEI) and carbon nanotube (CNT) is improved because they play a crucial role in preventing the leaching out of GOx. They also promote electron collection and transfer, and this is due to a strong hydrophobic interaction between the active site of GOx and the aromatic ring of anchor, while the effect is optimized with the use of thiophenol anchor due to its simple configuration. Based on that, it is quantified that by the adoption of thiophenol as anchor, the current density of flavin adenine dinucleotide (FAD) redox reaction increases about 42%, electron transfer rate constant ($k_s$) is $9.1{\pm}0.1s^{-1}$ and the value is 26% higher than that of catalyst that does not use the anchor structure.

U.S. and Korean teacher candidates' approaches to mathematical modeling on a social justice issue

  • Eunhye Flavin;Sunghwan Hwang
    • Research in Mathematical Education
    • /
    • v.27 no.1
    • /
    • pp.25-47
    • /
    • 2024
  • Mathematical modeling activities are gaining popularity in K-12 mathematics education curricula worldwide. These activities serve dual purposes by aiding students in making sense of real-world situations intertwined with social justice while acquiring mathematical knowledge. Despite efforts to prepare teacher candidates for instructing in mathematical modeling within a single country, little attention has been given to teacher candidates' approaches to mathematical modeling on a social justice issue from different countries. This article employs an in-depth, small-scale comparative study to examine the approaches of U.S. and Korean teacher candidates in solving a justice-oriented mathematics task. Our findings reveal that, although both U.S. and Korean teacher candidates identified certain variables as key when constructing a mathematical model, Korean teacher candidates formulated a more nuanced model than U.S. candidates by considering diverse variables. However, U.S. teacher candidates exhibited a heightened engagement in linking the task to social justice issues, whereas Korean teacher candidates barely perceived real-world problems in relation to social justice concerns. This study serves as a valuable tool to inform the roles and limitations of teacher education programs, shaped within specific educational contexts.

Photactivated adenylyl cyclase, a novel blue-light receptor flavoprotein, mediates photoavoidance in the unicellular flagellate Euglena gracilis

  • Iseki, Mineo;Matsunaga, Shigeru;Murakami, Akio;Ohno, Kaoru;Shiga, Kiyoshi;Yoshida, Kazuichi;Sugai, Michizo;Takahashi, Tetsuo;Hori, Terumitsu;Watanabe, Masakatsu
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.98-101
    • /
    • 2002
  • Euglena gracilis abruptly changes its swimming direction after a sudden increase or decrease in incident light intensity, that is, step-up or step-down photophobic responses, resulting in photoavoidance or photoaccumulation, respectively. To identify the photoreceptor molecules for these UV-A/blue-light type photobehaviors, we purified a flavoprotein from isolated putative photosencory organelles (PFBs) of Euglena. The purified flavoprotein, which noncovalently bound flavin adenine dinucleotide (FAD), seemed to be a heterotetramer of alpha- and beta-subunits. Predicted amino acid sequences of each of the subunits were similar to each other and contained two FAD-binding domains each followed by an adenylyl cyclase catalytic domain. The purified flavoprotein actually showed adenylyl cyclase activity, being drastically elevated by blue-light irradiation. Suppression of gene expression of the flavoprotein (Photoactivated Adenylyl Cyclase, PAC) by RNA interference (RNAi) caused loss of the step-up photophobic response, demonstrating that PAC actually mediates photoavoidance of Euglena.

  • PDF