• 제목/요약/키워드: Flavin

검색결과 92건 처리시간 0.026초

Phenotyping of Flavin-Containing Monooxygenase (FMO) Activity and Factors Affecting FMO Activity in Korean

  • Jeon, Sun-Ho;Park, Chang-Shin;Cha, Young-Nam;Chung, Woon-Gye
    • Toxicological Research
    • /
    • 제17권
    • /
    • pp.127-133
    • /
    • 2001
  • Together with cytochrome P450 (CYP), flavin-containing monooxygenase (FMO) present in liver microsomes oxidizes various endogenous and exogenous chemicals. In an effort to determine the human FMO activity, we have developed two non-invasive urine analysis methods using caffeine (CA) and ranitidine (RA) as the probe compounds. As the production of theobromine (TB) and ranitidine N-oxide (RANO) from CA and RA is catalyzed primarily by the hepatic FMO, we have assigned the urinary molar ratios of TB/CA and RA/RANO as the in vivo FMO activity. In 200 age-matched Korean volunteers, the obtained TB/CA ratio ranged from 0.4 to 15.2 (38-fold difference) and the RA/RANO ratio from 5.7 to 27.2 (4.8-fold). The FMO activity of 20's, determined by caffeine metabolism, was the highest (2.5$\pm$l.9) and those of 30's, 40's, 50's, 60's and 70's were 40%, 50%, 24%, 39% and 36% of the 20's, respectively. Intake of grapefruit juice, known to contain flavonoids, inhibited the in vivo FMO (TB/CA) activity by 79%. Addition of the flavonoids like naringin, quercitrin and kaempferol, present in grapefruit juice, to the in vitro microso-mal FMO assay, thiobenzamide S-oxidation, produced 75%, 70% and 60% inhibition, respectively. Obtained Ki values of quercitrin, kaempferol and naringin on the in vitro FMO activity were 6.2, 12.0 and 13.9 $\mu\textrm{M}$, respectively. This suggested that the dose of drug should need to be adjusted to suit the individual FMO activities when the drugs metabolized by FMO are given to patients. As the intake of grapefruit juice has been identified to inhibit the FMO as well as CYP3A4 and lA2 activities, patients taking drugs metabolized by these enzymes should not drink grapefruit juice as the carrier.

  • PDF

Glucose의 Redox 반응에 의한 인슐린 방출 Device의 설계와 합성 (Design and Synthesis of Devices Releasing Insulin in response to Redox Reaction of Glucose)

  • 정동준;;;심정섭
    • 공업화학
    • /
    • 제1권2호
    • /
    • pp.107-115
    • /
    • 1990
  • Glucose의 redox 반응에 의한 새로운 인슐린 방출계를 5, 5'-dithiobis(2-nitrobcnzoic acid)의 disulfide 결합을 이용해 인슐린을 pmma 막과 glucose oxidase에 고정화시켜 합성하였다. glucose와 glucose dehydrogenase 및 glucose oxidise와의 산화반응에 의해 disulfide 결합이 파괴되어 막과 효소로부터 인슐린이 방출된다. enzyme cofact들(nicotinamide adenin dinucleotide와 flavin adenin dinucleotide)을 coimmobilization 시켜 membrane device에 대해 electron mediator로 작용하도록 하여 glucose의 농도 민감성을 향상시켰고 protein device에 대해서는 glucose oxidase에 인슐린을 직접 고정화시켜 민감성을 더욱 향상시켰다. 이 두 가지 계들은 glucose 특이성을 나타내며 방출된 인슐린은 생체인슐린과 구분되지 않았다. 방출인슐린의 생리활성은 생체인슐린의 81%였다.

  • PDF

Differential Metabolism of the Pyrrolizidine Alkaloid, Senecionine, in Fischer 344 and Sprague-Dawley Rats

  • Chung, Woon-Gye;Donald R. Buhler
    • Archives of Pharmacal Research
    • /
    • 제27권5호
    • /
    • pp.547-553
    • /
    • 2004
  • The pyrrolizidine alkaloids (PAs), contained in a number of traditional remedies in Africa and Asia, show wide variations in metabolism between animal species but little work has been done to investigate differences between animal strains. The metabolism of the PA senecionine (SN) in Fischer 344 (F344) rats has been studied in order to compare to that found in the previously investigated Sprague-Dawley (SO) rats (Drug Metab. Dispos. 17: 387, 1989). There was no difference in the formation of ($\pm$) 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP, bioactivation) by hepatic microsomes from either sex of SO and F344 rats. However, hepatic microsomes from male and female F344 rats had greater activity in the Noxidation (detoxication) of SN by 88% and 180%, respectively, when compared to that of male and female SD rats. Experiments conducted at various pH showed an optimum pH of 8.5, the optimal pH for flavin-containing monooxygenase (FMO), for SN N-oxidation by hepatic microsomes from F344 females. In F344 males, however, a bimodal pattern was obtained with activity peaks at pH 7.6 and 8.5 reflecting the possible involvement of both cytochrome P450 (CYP) and FMO. Use of specific inhibitors (SKF525A, 1-benzylimidazole and methimazole) showed that the N-oxide of SN was primarily produced by FMO in both sexes of F344 rats. In contrast, SN N-oxide formation is known to be catalyzed mainly by CYP2C11 rather than FMO in SD rats. This study, therefore, demonstrated that there were substantial differences in the formation of SN N-oxide by hepatic microsomes from F344 and SD rats and that this detoxification is catalyzed primarily by two different enzymes in the two rat strains. These findings suggest that significant variations in PA biotransformation can exist between different animal strains.

Tryptophan-Based Hyperproduction of Bioindigo by Combinatorial Overexpression of Two Different Tryptophan Transporters

  • Hyun Jin Kim;Sion Ham;Nara-Shin;Jeong Hyeon Hwang;Suk Jin Oh;Tae-Rim Choi;Jeong Chan Joo;Shashi Kant Bhatia;Yung-Hun Yang
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권4호
    • /
    • pp.969-977
    • /
    • 2024
  • Indigo is a valuable, natural blue dye that has been used for centuries in the textile industry. The large-scale commercial production of indigo relies on its extraction from plants and chemical synthesis. Studies are being conducted to develop methods for environment-friendly and sustainable production of indigo using genetically engineered microbes. Here, to enhance the yield of bioindigo from an E. coli whole-cell system containing tryptophanase (TnaA) and flavin-containing monooxygenase (FMO), we evaluated tryptophan transporters to improve the transport of aromatic compounds, such as indole and tryptophan, which are not easily soluble and passable through cell walls. Among the three transporters, Mtr, AroP, and TnaB, AroP enhanced indigo production the most. The combination of each transporter with AroP was also evaluated, and the combination of AroP and TnaB showed the best performance compared to the single transporters and two transporters. Bioindigo production was then optimized by examining the culture medium, temperature, isopropyl β-D-1-thiogalactopyranoside concentration, shaking speed (rpm), and pH. The novel strain containing aroP and tnaB plasmid with tnaA and FMO produced 8.77 mM (2.3 g/l) of bioindigo after 66 h of culture. The produced bioindigo was further recovered using a simple method and used as a watercolor dye, showing good mixing with other colors and color retention for a relatively long time. This study presents an effective strategy for enhancing indigo production using a combination of transporters.

Purification and Characterization of Bacillus subtilis Protoporphyrinogen Oxidase and Pre-equilibrium Behavior During Oxidation of Protoporphyrinogen IX

  • Jeong, Eun-Ju;Han, Ok-Soo
    • BMB Reports
    • /
    • 제34권1호
    • /
    • pp.39-42
    • /
    • 2001
  • Previous studies indicate that B. subtilis protoporphyrinogen oxidase is poorly inhibited by diphenyl ether herbicides. To better understand the basis of this insensitivity, the enzyme was overexpressed as a soluble protein in E. coli, purified and characterized. The mechanism of oxidation of B. subtilis protoporphyrinogen IX was studied and the enzyme kinetic parameters were determined for protoporpyrinogen IX; $K_m$, and $k_{cat}$ were $6.3\;{\mu}M$ and $0.028\;h-^1$, respectively. The enzyme required flavin adenine dinucleotide as a cofactor and its activity was enhanced by 1 mM n-octylglucopyranoside. The nonenzymatic oxidation rate was dependent on the concentration of protoporphyrinogen IX, suggesting that the reaction involves a pre-equilibrium step followed by a rate-limiting step.

  • PDF

Ferric Reductase Activity of the ArsH Protein from Acidithiobacillus ferrooxidans

  • Mo, Hongyu;Chen, Qian;Du, Juan;Tang, Lin;Qin, Fang;Miao, Bo;Wu, Xueling;Zeng, Jia
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권5호
    • /
    • pp.464-469
    • /
    • 2011
  • The arsH gene is one of the arsenic resistance system in bacteria and eukaryotes. The ArsH protein was annotated as a NADPH-dependent flavin mononucleotide (FMN) reductase with unknown biological function. Here we report for the first time that the ArsH protein showed high ferric reductase activity. Glu104 was an essential residue for maintaining the stability of the FMN cofactor. The ArsH protein may perform an important role for cytosolic ferric iron assimilation in vivo.

Redox Potential of a Soybean Ferric Leghemoglobin Reductase

  • Kim, Hyun-Mi
    • BMB Reports
    • /
    • 제31권5호
    • /
    • pp.444-452
    • /
    • 1998
  • The visible spectra of soybean ferric leghemoglobin reductase exhibited a charge transfer band at 530 nm under aerobic condition. Spectra of the oxidized enzyme show a flavin peak at 454 nm and the enzyme has three redox states associated with the active site of the enzyme. The enzyme has an active disulfide bridge and two-electron transfer may dominate in the ferric state of leghemoglobin reduction. The midpoint potentials of the enzyme were determined by spectrotitration to be -0.294 V for disulfide/dithiol and -0.318 V for FAD/$FADH_2$. Since the midpoint potentials for $NAD^+$/NADH and the ferrous/ferric states of leghemoglobin are -0.32 V and +0.22 V, respectively, it is proposed that two electrons are transferred sequentially from NADH to FAD, to the disulfide group, and then to the ferric state of leghemoglobin in the enzyme reaction.

  • PDF

Electronic Structure of Flavins. Inclusion of Methyl Groups in Molecular Orbital Treatments of Flavins

  • Pill-Soon Song
    • 대한화학회지
    • /
    • 제16권3호
    • /
    • pp.119-134
    • /
    • 1972
  • Various MO methods with differing degrees of sophistication are shown to yield qualitatively consistent results for methyl isoalloxazins. However, with crude methods such as the HMO and ${\omega}$-technique, the choice of Coulomb and resonance integralsis critical, in contrast with simpler molecular systems. The empirical value of ${\omega}$=0.5 appears to be more reasonable than 1.4. Methyl groups in these flaving are best treated by the group orbital approximation. The pseudo-heteroatom approximation overestimates methyl hyperconfiguration with the Pariser-Parrpole SCR MO method. siglet ${\pi}{\rightarrow}{\pi}^*$ transition energies are calculated by the P-P-P method and agree reasonably with the experimental values. 2- and 4-Thioisoalloxazine analogs are also treated. Reactivity indices of the flavin molecule are presented, includeing superdelocalizability. frontier orbital and radical densities. Various aspects of the applications of these indices of the methyl groups on dipolemoments, inozation potentialsm elctron affinities, and spectra are decribed in detail.

  • PDF

An Immobilized Fenton Catalyst$^1$

  • Song, Pill-Soon;Choi, Jung-Do
    • Bulletin of the Korean Chemical Society
    • /
    • 제1권3호
    • /
    • pp.113-114
    • /
    • 1980
  • Lumichrome (7,8-dimethylalloxazine) exhibits two fluorescence emission maxima at 440 and 540 nm in pyridine-dioxane. These emission band maxima are attributable to radiative decays from the excited states of lumichrome and its flavin tautomer, 7,8-dimethylisoalloxazine, respectively. The growth of the latter can be followed upon excitation of the former with a 2-nanosecond light pulse generated from the nitrogen plasma discharge lamp. The excited state tautomerism results from proton transfer from N-1 to N-10 position during the lifetime of the lumichrome singlet excited state. The rate depends on the concentration of general base, pyridine, and it is an order of magnitude slower than diffusion-controlled processes.

Monoamine Oxidase Inhibitory Components from the Fruits of Cudrania tricuspidata

  • Hong, Seong-Su;Han, Xiang-Hua;Jeong, Seon-Hwa;Park, Byung-Min;Lee, Seon-A;Lee, Kyong-Soon;Lee, Myung-Koo;Hwang, Bang-Yeon;Ro, Jai-Seup
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.255.2-255.2
    • /
    • 2003
  • Monoamine oxidase (MAO) is flavin-containing enzyme that catalyzes the oxidation of variety of amine-containing neurotransmitters such as catecholamines and serotonin to yield the corresponding aldehyde. Thus, MAO activity might play important roles in some pathological states of central nervous system diseases such as depression, alcoholism, and schizophrenia. (omitted)

  • PDF