• Title/Summary/Keyword: Flavanone-3-hydroxylase

Search Result 12, Processing Time 0.016 seconds

A Set of Anthocyanin Biosynthetic Genes are Differentially Expressed in Strawberry (Fragaria x ananassa cv Maehyang) during the Fruit Development Process (매향 딸기로부터 anthocyanin 합성 유전자의 분리 및 과실발달 과정에서의 발현 분석)

  • Bae, Ki-Suk;Kih, Joon-Yeong;Pyee, Jae-Ho
    • Journal of Life Science
    • /
    • v.18 no.2
    • /
    • pp.234-240
    • /
    • 2008
  • Anthocyanin synthesis in strawberry (Fragaria x ananassa cv Maehyang) begins approximately 26 days postflowering and continued throughout fruit ripening. A set of cDNA clones encoding the anthocyanin biosynthetic enzymes were isolated from strawberry. A pair of primers were designed for polymerase chain reaction (PCR) through the comparison of the nucleotide sequences of homologous genes from diverse plants. Reverse transcriptase-PCRs were performed using cDNA synthesized from ripe fruit total RNA and the primers corresponding to each gene. Eight genes of the anthocyanin pathway were cloned and confirmed by sequencing to code for phenylalanine ammonia lyase (PAL), 4-cummarate CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone-3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidine synthase (ANS), UDP-glucose:flavonoid-3-O-glucosyl-transferase (UFGT). Northern analyses showed that the corresponding genes were differentially expressed during the fruit development process. All genes except PAL were predominantly expressed in fruit. Expression of PAL, DFR and ANS was detected 10 days postflowering at the early stage of fruit development, declined for a while and sharply increased 22 days postflowering then showed a peak 34 days postflowering. The other genes, however, were not expressed up to 22 or 30 days postflowering when the initial fruit ripening events occur at the time of initiation of anthocyanin accumulation. The onset of anthocyanin synthesis in ripening strawberry coincides with a coordinated induction of the anthocyanin pathway genes, suggesting the involvement of regulatory genes. We propose that at least two different regulatory mechanisms playa role in the biosynthesis of anthocyanin during color development of strawberry.

Characterization of flavonoids specific gene expression in the petals of Dianthus caryophyllus (carnation) (카네이션 (Dianthus caryophillus)의 색소 발현체계 분석)

  • Hur, Suel-Hye;Ahn, Byung-Joon;Joung, Hyang-Young;Hyung, Nam-In;Min, Byung-Whan
    • Journal of Plant Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.415-422
    • /
    • 2009
  • This study aimed to develop carnation cultivars with new coloring system. We used four genes of Petunia hybrida - chalcone synthase (CHS), flavanone 3-hydroxylase (FHT), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS) - as probes, in order to isolate four genes from carnations (Dianthus Caryophyllus). The isolated genes were used as probes in order to select mutants out of collected carnations, using Northern blot analysis. The Northern blot analysis revealed 10 DFR mutants - Gumbyul, Eunbyul, Ballatyne, Crystal, Eugenia, Koreno, Imp. White Sim, West Crystal, White Alpine, and White Charotte. Six among the selected 10 cultivarswere excluded from the target cultivars, because Eugenia, Imp. White Sim, and White Alpine were proved to be double mutants of DFR and ANS, Koreno was considered to be a double mutant of DFR and CHS, and Gumbyul and Ballatyne were proved to be double mutants of DFR and CHI (Chalcone isomerase). Consequently, we selected five DFR mutants, including Virginie, which was already selected as a DFR mutant. Finally, we measured DFR activities in order to confirm the selection, and the results showed that all of the five cultivars - Eunbyul, Crystal, West Crystal, White Charotte, and Virginie - had got no DFR activity.