• Title/Summary/Keyword: Flatband potential

Search Result 2, Processing Time 0.016 seconds

Electrical Properties of p-GaAs Photoelectrode for Solar Energy Conversion (태양광 변환을 위한 p형 GaAs 광전극의 전기적 특성)

  • 윤기현;이정원;강동헌
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1262-1268
    • /
    • 1995
  • Photoelectrochemical properties of p-GaAs electrode have been investigated. I-V characteristic shows that the cathodic photocurrent is observed at -0.7 V vs. SCE. The photoresponse at near 870~880nm wavelength indicates that the photogenerated carriers contibuted to the observed current. The maximum converson efficiency of 35% is obtained for a Xe lamp light source at 400nm. In C-V relation, capacitance peaks appeared at the frequencies of 100Hz and 300Hz due to the activation of the interfacial states which exist at the energy level corresponding to the one-third of the GaAs band gap. The difference of about 1.1V between flatband potential (Vfb) from the Mott-Schottky method and onset voltage from I-V curve is observed due to the trap of carriers at the interfacial states in the boundary between GaAs and electrolyte. In case of WO3 deposited p-GaAs electrode, higher positive onset current and photocurent density are obtained. This can be explained by the fact that carriers are generated by light penetrated into the WO3 thin flm as well as p-GaAs substrate and then move into the electrolyte effectively.

  • PDF

Photo-Electrochemical Properties of $TiO_2$ Electrodes Prepared by Anodic Oxidation (양극산화에 의해 제조된 $TiO_2$ 전극의 광전기화학적 성질)

  • Yong Kook Choi;Soon Ki Lee;Q Won Choi;Jeong Sub Seong;Ki Hyung Chjo
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.12
    • /
    • pp.1010-1018
    • /
    • 1993
  • The titanium oxide thin films were prepared by anodic oxidation. The Photo-electrochemical properties of the electrodes were studied in 1 M NaOH solution. The flat band potentials of $TiO_2$ electrodes prepared by anodic oxidation showed around -0.8V and the values were shifted 0.2V to the positive potential direction that of single crystal $TiO_2$. Reduction potential of oxygen by cyclic voltammetry showed around -0.95V vs. SCE and these reactions were processed totally irreversible. The photocurrent of electrodes were showed shorter wavelength than that of single crystal $TiO_2$ and its current density decreased.

  • PDF