• Title/Summary/Keyword: Flat-rate

Search Result 788, Processing Time 0.027 seconds

Design of Punch Shape for Reducing the Punch Wear in the Backward Extrusion (후방 압출 펀치의 마멸 저감을 위한 펀치 형상 설계)

  • Kim Dong Hwan;Lee Jung Min;Kim Byung Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.180-187
    • /
    • 2004
  • Die design to minimize the die wear in the cold forging process is very important as it reduce the production cost and the increase of the production rate. The quantitative estimation fur the die wear is too hard because the die wear is caused by many process variables. So, in this paper, the optimal shape of the backward extrusion punch is newly designed through the FE-analysis considering the surface expansion and Archard wear model in order to reduce the rapid wear rate that is generated for the backward extruded products exceeding the forming limit. The main shape variables of the backward extrusion punch are the flat diameter, angle, and round of the punch nose part. As the flat diameter and angle of the punch nose are larger, the surface expansion is reduced and the wear rate is decreased according to the reduction of the punch round. These results obtained through this study can be applied to the real manufacturing process.

Effect of Shading Types and Duration on Alleviation of High Temperature Stress in Cnidium officinale Makino (차광형태와 기간이 천궁의 고온피해 경감에 미치는 효과)

  • Nam, Hyo Hoon;Seo, Young Jin;Jang, Won Cheol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.2
    • /
    • pp.111-118
    • /
    • 2020
  • Background: Cnidium officinale is a medicinal crop sensitive to high temperature. It is necessary to develop environment control technology that can reduce environmental stresses such as high temperature. This study was conducted to develop technology for stable production of Cnidium officinale by reducing damage owing to high temperature by applying shading treatment of varying duration, and structure. Methods and Results: Black shading nets were used from May to September or November; shading structures such as pillar, flat roof, and tunnel type structures were installed. Environmental changes, rate of photosynthesis, and growth characteristics were investigated. The shading treatment reduced temperature by 3℃. The rate of photosynthesis and yield with shading treatment were higher by 134% and 127%, respectively, than those with full sunlight. The ratio of shading area ranged from 50% to 71% according to the type of shading structure. The effect of environmental control on growth varied depending on the type of shading structure. Conclusions: The shading treatment reduced damage owing to high temperature, shading rate of 55% - 75% was recorded between the period May - September, and the flat roof type shading structure was considered the most suitable among shading methods.

Effect of Boundary Layer Generated on the fin surfaces of a Compact Heat Exchanger on the Heat Transfer and Pressure Drop Characteristics (컴팩트형 열교환기의 핀 표면에서 발생하는 경계층이 열교환기의 전열 및 압력강하 특성의 변화에 미치는 영향에 관한 수치해석적 연구)

  • KIM Chul-Ho;Jung Ji-Yong
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.82-88
    • /
    • 1998
  • As a par of a project related to the development of the design algorithm of a compact heat exchanger for the application of the electronic home appliances, the effect of the discreteness of the airflow boundary generated on the cooling fin surface on the heat transfer and pressure drop characteristics of the heat exchanger was studied numerically. In general, there are two critical design parameters seriously considered in the design of the heat exchanger; heat transfer rate(Q) and pressure drop coefficient(C/sub p/). Even though the higher heat transfer rate with lower pressure drop characteristics is required in a design of the heat exchanger, it is not an easy job to satisfy both conditions at the same time because these two parameters are phenomenally inversely proportional. To control the boundary layer thickness and its length along the streamline, the surface of the flat fin was modified to accelerate the heat transfer rate on the fin surface. To understand the effect of the discreted fin size(S/sub w/) and its location(S/sub h/) on the performance of the heat exchanger in the airflow field, the flat fin was modified as shown in Fig. 1. From this study, it was found that the smaller and more number of slits on the fin surface showed the higher energy diffusion rate. It means that the discreteness of the boundary layer is quite important on the heat transfer rate of the heat exchanger. On the other hand, if the fin surface configuration is very complex than needed, higher static pressure drop occurs than required in a system and it may be a reason of the induced aerodynamic noise in the heat exchanger.

  • PDF

Research for Carbon Dioxide Fluctuation using Drone above the Mud Flat and Reed Beds in the Suncheon Bay (드론 관측을 통한 순천만 갯벌과 갈대밭 상부 대기의 이산화탄소 농도 분포 연구)

  • Kang, Dong-hwan;Jo, Won Gi;Yun, Yeon Su;Yu, Hun Sun;Jang, Seon Woong;Kim, Dong Lib;Park, Jeong Hwan;Song, Young Chul;Choi, Yong Jae
    • Journal of Environmental Science International
    • /
    • v.29 no.7
    • /
    • pp.703-713
    • /
    • 2020
  • In this study, carbon dioxide concentration and air temperature at different elevations were observed and analyzed in the upper atmosphere of mud flat and reed beds at low tide in Suncheon Bay. The carbon dioxide concentration and air temperature sensors were mounted on the drone, and the carbon dioxide concentration and air temperature by altitude (5 m, 10 m, 20 m, 40 m) at five points in the tidal flat and reed beds were observed in the morning and afternoon. The carbon dioxide concentrations in the upper atmosphere of the tidal flat ranged from 453.0 to 460.2 ppm in the morning and 441.6 to 449.7 ppm in the afternoon. The carbon dioxide concentrations in the upper atmosphere of the reed beds ranged from 448.9 to 452.4 ppm in the morning and 446.0 to 454.4 ppm in the afternoon. The carbon dioxide concentrations in the upper atmosphere of the tidal flat was higher in the morning than in the afternoon, and the carbon dioxide concentration decreased as the altitude increased. The carbon dioxide concentration in the upper atmosphere of the reed beds was similar in the morning and afternoon at all altitudes, and the carbon dioxide concentration decreased as the altitude increased. The correlation coefficient between carbon dioxide concentration and air temperature observed in the tidal flat in the morning was -0.54 ~ -0.77, and the correlation coefficient between carbon dioxide concentration and air temperature observed in the afternoon was 0.56 ~ 0.80. The correlation coefficient between carbon dioxide concentration and temperature observed in the morning in the reed field was low, below 0.3, and the correlation coefficient between carbon dioxide concentration and air temperature observed in the afternoon was 0.35 ~ 0.77. In the upper atmosphere of the tidal flats and reed beds, the linear function was suitable for the change of carbon dioxide concentration as a air temperature, and the coefficient of determination of the estimated linear function was higher in the afternoon than in the morning. Through this study, it was confirmed that the carbon dioxide concentration in the upper atmosphere of the tidal flat and the reed beds was different, and the increase rate of carbon dioxide concentration in the upper atmosphere of the tidal flat and the reed beds was higher in the afternoon than in the morning.

Prediction of Physical Properties and Shear Wave Velocity of the Ground Using the Flat TDR System (Flat TDR 시스템을 이용한 지반의 물리적 특성 및 전단파속도 예측)

  • Jeong, Chanwook;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.173-191
    • /
    • 2022
  • In this study, the shear wave velocity of the ground was measured using Flat TDR, and the precision analysis of the measured value and the verification of field applicability were performed. The shear wave velocity measurement value was derived in the field using the piezo-stack combined in the Flat TDR. analyzed. As a result of the experiment, the average value of the change in shear wave speed at the time of grout material injection was 10.15 m/s at the beginning of age, and the average value of the change in shear wave speed after the 7th to 14th days was 65.99 m/s, showing a tendency to increase with age. Also, it was found that dry density and shear wave speed increased as the water content increased on the dry side, and that the dry density and shear wave rate decreased as the water content increased on the wet side as the water content increased. The shear modulus value derived from the field test was confirmed to be a minimum of 17.36 MPa and a maximum of 28.13 MPa, confirming a measurement value similar to the reference value. Through this, it can be seen that the measured value of the shear modulus using Flat TDR is reliable data, and it can be determined that the compaction management of the site can be effectively managed in the future.

A Study on Affinity Chromatography of Protein by Flat and Hollow-Fiber Membrane Module (평판막 및 실관막 모듈에 의한 단백질의 친화성 크로마토그래피에 관한 연구)

  • 이광진;염경호
    • Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.50-58
    • /
    • 1998
  • Protein affinity membranes were prepared via coating of chitosan gel on the porous flat and hollow-fiber polysulfone membranes, followed by the immobilization of the reactive dye (Cibacron Blue 3GA) to the chitosan gel. Maximum protein binding capacity of these affinity membranes was about 70 $\mu{g/cm}^2$. Using the affinity flat membrane module, the elution chromatography of human serum albumin (HSA) was performed to determine the optimum condition of eluent buffer. The optimum condition of eluent was the universal buffer solution of 0.06 M concentration containing 1 M KCl at pH 10. For the frontal chromatography of HSA using the flat module, the dynamic protein binding capacity was rapidly decreased from the equilibrium values with increasing flow rate and HSA concentration of the loading solution. However, in the case of hollow-fiber module, the dynamic binding capacity was maintained an equilibrium value without depending on the operating conditions. These results showed that the hollow-fiber module was more effective than the flat module as an affinity chromatography column.

  • PDF

Analysis of Long-term Thermal Performance of Solar Thermal System Connected to District Heating System (지역난방 적용 태양열시스템의 장기 열성능 분석)

  • Baek, Nam-Choon;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.167-173
    • /
    • 2007
  • This study analyzed by simulation using TRNSYS as well as by experiment on the solar district heating system installed for the first time for the district heating system in Bundang. Simulation analysis using TRNSYS focused on the thermal behavior and long-term thermal efficiency of solar system. Experiment carried out for the reliability of simulation system. This solar system where the circuits of two different collectors, flat plate and vacuum tube collector, are connected in series by a collector heat exchanger, and the collection characteristics of each circuit varies. Therefore, these differences must be considered for the system's control. This system uses variable flow rate control in order to obtain always setting temperature of hot water by solar system. Specifically, this is a system that heats returning district heating water (DHW) at approximately $60^{\circ}C$ using a solar collector without a storage tank, up to the setting temperature of approximately $85{\sim}95^{\circ}C$ To realize this, a flat plate collector and a vacuum tube collector are used as separate collector loops. The first heating is performed by a flat plate collector loop and the second by a vacuum tube collector loop. In a gross collector area basis, the mean system efficiency, for 4 years, of a flat plate collector is 33.4% and a vacuum tube collector is 41.2%. The yearly total collection energy is 2,342GJ and really collection energy per unit area ($m^2$) is 1.92GJ and 2.37GJ respectively for the flat plate vacuum tube collector. This result is very important on the share of each collector area in this type of solar district heating system.

The Environmental Characteristics and Factors on the Cultured manila clam (Ruditapes philippinarum) at Hwangdo and Jeongsanpo of Taean in the West coast of Korea (서해 연안 황도와 정산포 바지락 양식장의 환경특성)

  • Choi, Yoon Seok;Song, Jae Hee;Yoon, Sang Pil;Chung, Sang Ok;An, Kyoung Ho;Park, Kwang Jae
    • The Korean Journal of Malacology
    • /
    • v.30 no.2
    • /
    • pp.117-126
    • /
    • 2014
  • To assess the effect of environmental factors on the sustainability of cultured production manila clam (Ruditapes philippinarum), we investigated the habitat characteristics of tidal flat (Hwangdo and Jeongsanpo in Taean). We measured the physiochemical parameters (temperature, salanity, pH, dissolved oxygen and nutrients) and the characteristics (mean size, chemical oxygen demand, ignition loss, C/N ratio and C/S ratio) of surface sediments. The C/N ratio of Hwangdo and Jeongsanpo were 9.0, 5.3 and the C/S ratio was 0.162, 0.159. The concentration of chlorophyll a at Hwangdo was higher than that of Jeongsanpo and species of micro algae were 102 and 100. The enrichment factor (Ef) and index of accumulation rate (Igeo) of the metals showed that those research areas can be classified as heavily polluted, heavily to moderately polluted, or more or less unpolluted, respectively. So two survey area of cultured clams in the tidal flat have been effected by the various environmental conditions, there are needed an improvement methods and continuous research for increasing the production of manila clam (Ruditapes philippinarum).

Analysis and Quantification of Seawater Infiltration by Wave Action in Coastal Zone (연안해역에서 파도에 의한 해수 침투이론의 비교와 정량화)

  • Cheong Cheong-jo;Choi Doo-hyoung;Kim Tae-keun;Okada Mitsumasa
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.4
    • /
    • pp.3-11
    • /
    • 2001
  • To know the seawater infiltration into tidal flat sediment in coastal area is very important, because it is significantly correlated with the infiltration and transportation of pollutants in soil, the supply of dissolved oxygen, nutrients and organic matter to benthic organisms for survival of benthic organisms and the seawater purification. So, we set up purpose to clarify the infiltration behavior of seawater by wave action in tidal flat, to clear the effects of slope of tidal flat and breaking wave height on seawater infiltration and to quantify the infiltration volume of seawater. For purpose, the seawater infiltration was studied with visualization method by using coloring tracer and transparent glass beads replaced as natural sediment in model tidal flat. Specific conclusions derived from this study are as follows. The semi-circular type infiltration of seawater by wave action into saturated sediment was a new infiltration behavior that was not considered in previous studies. The infiltration rate of seawater was increased with increasing of breaking wave height and slope of tidal flat. However, the effects of the slope was bigger than that of breaking wave height on seawater infiltration into tidal flat sediments. It was possible to calculate the infiltration volume of seawater by wave action in natural tidal flat sediment and in fields. Therefore, we can point out that wave action play an important role in the supply of dissolved oxygen, nutrients and organic matter to benthic organisms, transportation or diffusion of pollutants and seawater purification. So, we hope to be studied the supply of food to benthic organism, pollutant transport and seawater purification on the base of these results.

  • PDF

Seasonal and Spatial Variations of Tidal Flat Sediments in Yeoja Bay, South Coast of Korea (한국 남해안 여자만 조간대 퇴적물의 시공간적 변화)

  • Choi, Jeong-Min;Lee, Yeon-Gyu;Woo, Han-Jun
    • Journal of the Korean earth science society
    • /
    • v.26 no.3
    • /
    • pp.253-267
    • /
    • 2005
  • Seasonal and spatial variations of tidal flat sediments were studied in Yeoja Bay. Results of the yearly observation of tidal flat transect lines indicated that the monthly change of grain size composition was not distinct from each tidal flat transect line, but it was quite clear that clay covered $40\~70\%$ of the sediment composition. Clay composed most highest in the northern part of the bay, and lowest in the western. As clay content increased, water and organic matter showed a tendency of increase, while the mean grain size was fixed per clay amount. Shear strength came out as 0 kPa as a whole. Seasonal variations of clay contents in each tidal flat were higher in winter and spring, but lower in summer and autumn. Thefine sediments were likely to be accumulated in the winter and spring. The average accumulation rate of each tidal flat was $-14.62\~38.57mm{\cdot}yr^{-1}$. The numbers showed $32.13mm{\cdot}yr^{-1}$ in the northern, $-14.62mm{\cdot}yr^{-1}$in the western, and $6.46mm{\cdot}yr^{-1}$ in the eastern part. During the coarse of this study sediment accumulation rates indicated that the sediments deposited continuously in the northern part of tidal flat, whereas erosion occurred in the western part. However, there was no distinct change in the eastern part. It was due to the clockwise lateral circulation in Yeoja Bay. Seasonally, sedimentation happened during the dry season (winter and spring) and erosion during the wet season (summer and autumn).