• Title/Summary/Keyword: Flat-panel displays

Search Result 185, Processing Time 0.034 seconds

Suppression of Discontinuity in the Pseudoscopic Region of Multiview 3D Displays

  • Lee, Jae-Yong;Miyashita, Tetsuya;Uchida, Tatsuo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1107-1111
    • /
    • 2009
  • Flat panel multiview 3D displays developed in recent years have pseudoscopic regions that appear unnatural to viewers. We suggest a new method to suppress the pseudoscopic regions based on the visual characteristics of binocular rivalry. We confirm the validity of this method experimentally and show that the unnaturalness caused by pseudoscopic regions can be effectively suppressed.

  • PDF

Current Status and Technology of Plasma Displays (플라즈마 디스플레이의 기술과 현황)

  • 강정원;김영섭
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.4
    • /
    • pp.1-4
    • /
    • 2004
  • 21세기에 접어들면서 Digital시험방송의 시작과 다양한 Contents의 유입으로 평판디스플레이 (Flat Panel Display)에 관한 관심과 수요가 증가하고 있다. 이 중 PDP는 90년대 후반부터 양산 및 개발을 시작하여 현재는 40 inch에서 60 inch 화면 크기의 제품을 시장에서 구입할 수 있으며, 03년도에는 80 inch 크기의 Proto-type Model을 공개한 바 있다. PDP는 40 inch 이상의 대면적 구현이 용이하다는 점, CRT와 동등 수준의 화상 구현이 가능하다는 점, 제조공법이 간단하고 제조원가가 저렴하다는 점 등을 특징으로 시장을 확대하고 있으나, 좀 더 대중적인 디스플레이가 되기 위해서는 고휘도 및 고효율화, 화질개선 그리고 저가격화 등과 같은 과제를 해결하여야 한다. 본 논문에서는 PDP의 개발역사 및 시장현황, 구조 및 구동 방법 그리고 해결과제 및 전망에 대해서 포괄적으로 살펴보기로 한다.

  • PDF

Progress in Manufacture of Flat Panel Displays Using Piezoelectric Drop-On-Demand Ink Jet

  • Creagh, L. T.;Mcdonald, M. M.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.157-162
    • /
    • 2003
  • Piezoelectric ink jet offers a promising combination of productivity, reliability and uniformity that are appropriate for jetting organic electronic materials. Spectra is manufacturing a printhead specifically for display manufacturing. This printhead contains a robust material set and is intended to allow calibration of individual nozzles to meet uniformity requirements of+/-2% for display manufacture.

  • PDF

Research on the Emergence of Dominant Design from Technological Competition in the Flat-panel Display Industry (평판 디스플레이 기술경쟁에서 지배적 디자인의 출현에 관한 연구)

  • Yoon, Inhwan;Lee, Heesang
    • Management & Information Systems Review
    • /
    • v.37 no.2
    • /
    • pp.63-85
    • /
    • 2018
  • Electronic displays have developed as instruments that function as windows of information to satisfy the bidirectional needs of electronic device manufacturers and users. The cathode-ray tube (CRT) display once dominated the display industry. Now, the liquid crystal display (LCD) is dominant, and promising displays are competing to become the next-generation display. Displays reflect the characteristics of the information and communication technology (ICT) industries, such as technological changes, innovative features, and competitive dynamics, and have technologically evolved to dominate the industry and market through various ICT devices. This research utilizes a dominant design concept and examines the case of the flat-panel display industry to propose a comprehensive framework, which considers technological, organizational, and environmental characteristics, of the determinants influencing dominance in the technology-intensive ICT industry. The results show that a dominant design in the flat-panel display industry emerges from technological competition among several designs, based on technological characteristics and market acceptance, and dominates the industry and market by various environmental factors. Our results emphasize the difference between generic technologies and the speed of technological innovation and expand the understanding of the emergence of a dominant design. Furthermore, this paper suggests practical implications for establishing a competition strategy and strategic guidance for other ICT industries as well as the display industry.

Laser Thermal Processing System for Creation of Low Temperature Polycrystalline Silicon using High Power DPSS Laser and Excimer Laser

  • Kim, Doh-Hoon;Kim, Dae-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.647-650
    • /
    • 2006
  • Low temperature polycrystalline silicon (LTPS) technology using a high power laser have been widely applied to thin film transistors (TFTs) for liquid crystal, organic light emitting diode (OLED) display, driver circuit for system on glass (SOG) and static random access memory (SRAM). Recently, the semiconductor industry is continuing its quest to create even more powerful CPU and memory chips. This requires increasing of individual device speed through the continual reduction of the minimum size of device features and increasing of device density on the chip. Moreover, the flat panel display industry also need to be brighter, with richer more vivid color, wider viewing angle, have faster video capability and be more durable at lower cost. Kornic Systems Co., Ltd. developed the $KORONA^{TM}$ LTP/GLTP series - an innovative production tool for fabricating flat panel displays and semiconductor devices - to meet these growing market demands and advance the volume production capabilities of flat panel displays and semiconductor industry. The $KORONA^{TM}\;LTP/GLTP$ series using DPSS laser and XeCl excimer laser is designed for the new generation of the wafer & FPD glass annealing processing equipment combining advanced low temperature poly-silicon (LTPS) crystallization technology and object-oriented software architecture with a semistandard graphical user interface (GUI). These leading edge systems show the superior annealing ability to the conventional other method. The $KORONA^{TM}\;LTP/GLTP$ series provides technical and economical benefits of advanced annealing solution to semiconductor and FPD production performance with an exceptional level of productivity. High throughput, low cost of ownership and optimized system efficiency brings the highest yield and lowest cost per wafer/glass on the annealing market.

  • PDF

Study on 3-dimension Image Process based on Organic light Emitting Diode (유기발광소자 (Organic Light Emitting Diode)를 이용한 3차원 영상에 대한 연구)

  • Lee, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.497-499
    • /
    • 2005
  • A portable terminal assistant market grows rapidly every year and it requires many change in research on display devices. Among many newly developing methods, OLED(Organic Light Emitting Diode) is considered an advanced flat display device because its excellent characteristics, including high speed response, full color performance, low power consumption and flux of panel. However changes in the market of display shows that the market will require 3-dimensional images, but it is hard for existing 2-dimensional displays to make 3-dimensional images. Therefore we will try to find various methods such as holograms. In this paper, we will show existing flat displays can make 3-dimensional images by applying Lenticular Screen printing techniques on the organic semiconductor display device.

  • PDF

Display Technologies for Immersive Devices and Electronic Skin (디스플레이 현황과 발전방향 -실감 및 스킨 기기로의 확대)

  • Park, Y.J.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.2
    • /
    • pp.10-18
    • /
    • 2019
  • Since the introduction of CRT(Cathode Ray Tube) in the 1950s, display technologies have been developed continuously. Flat panel displays such as PDP(Plasma Display Panel) and LCD(Liquid Crystal Display) were commercialized in the late 1990s, and OLED(Organic Light Emitting Diodes) and Micro-LED(Micro-Light Emitting Diodes) are now being developed and are becoming widespread. In the future, we expect to develop ultra-realistic, flexible, embedded sensor displays. Ultra-realistic display can be applied to AR/VR(Augmented Reality/Virtual Reality) devices and spatial light modulators for holography. The sensor-embedded display can be applied to robots; electronic skin; and security devices, including iris recognition sensors, fingerprint recognition sensors, and tactile sensors. AR/VR technology must be developed to meet technical requirements such as viewing angle, resolution, and refresh rate. Holography requires optical modulation technology that can significantly improve resolution, viewing angle, and modulation method to enable wide-view and high-quality hologram stereoscopic images. For electronic skin, stable mass production technology, large-area arrays, and system integration technologies should be developed.

A study on the Improvement of the luminous efficiency with new sustaining electrode structurs in ac-PDPs (새로운 유지전극 구조에 의한 ac-PDP 에서의 효율 개선에 관한 연구)

  • Lee, Jae-Young;Shin, Joong-Hong;Park, Chung-Hoo;Cho, Jung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1818-1820
    • /
    • 2000
  • Due to recent technology advances, needs for flat panel displays, plasma display panels(PDPs) whose advantages are simple structure, high resolution, wide viewing angle is increasingly expected to be the first flat panel of large screen, walt hanging TVs. But the luminance and luminous efficiency of color PDP is net up to the level of a CRT. So, New electrode shape which is different from the conventional electrode has to propose to improve the luminance and luminous efficiency. In this paper, we suggested new shaped electrodes. In new shaped electrode, the discharge current was reduced compared with conventional type by reducing the unnecessary diffusion loss near the barrier rib. However, the luminance was nearly the same as conventional type. So, the luminous efficiency improved about 35%.

  • PDF