• Title/Summary/Keyword: Flat rolling

Search Result 74, Processing Time 0.028 seconds

The development of FE model for the precision prediction of strip profile in flat rolling (판 압연에서 판 형상 정밀 예측을 위한 유한요소 모델 개발)

  • Yun K. H.;Kim T. H.;Shin T. J.;Lee W. H.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.197-203
    • /
    • 2004
  • A full finite element (FE)-based approach is presented for the precision analysis of the strip profile in flat rolling. Basic FE models for the analysis of the mechanical behavior of the strip and of the rolls are described in detail. Also described is an iterative strategy for a rigorous treatment of the mechanical contact occurring at the roll-strip interface and at the roll-roll interface. Then, presented is an integrated FE process model for the coupled analysis of the mechanical behavior of the strip, work roll, and backup roll in four-high mill. A series of process simulation are conducted and the results are compared with the measurements made in hot and cold rolling experiments.

  • PDF

A Study on the Cross Rolling for Improvement of Flatness of Plate (판재의 편평도 향상을 위한 교차압연에 관한 연구)

  • Nam K. O.;Seo K. S.;Rho B. R.;Hong S. I.
    • Transactions of Materials Processing
    • /
    • v.14 no.1 s.73
    • /
    • pp.43-48
    • /
    • 2005
  • The production of metal strip with uniform thickness and flatness are two important problems associated thin strip rolling. The thickness and flatness of strip are affected by the flattening of contact surface between strip and roll, the elastic recovery and the bending of roll. Especially, the flatness of the strip is greatly affected by bending deflection of roll. The roll must be designed considered the elastic deformation of roll. This study describes the measurement of thickness and flatness of strip and shows the crown roll for producing flat strip. But it is difficult to produce the crown roller. The cross rolling that is a simple method which can produce the flat strip is introduced and it is found the optimal cross angle for improvement of flatness of plate. These problems are solved by the MARC code on the basis of elastic-plastic material and the updated Lagrangian formulation.

Analysis of Friction Coefficient Dependent on Variation of Steel Grade and Reduction Ratio in High Temperature Rolling Process (고온압연공정에서 강종 및 감면율 변화에 따른 마찰계수 변화 분석)

  • Her, J.;Lee, H.J.;Na, D.H.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.410-415
    • /
    • 2009
  • Experimental and numerical studies were performed to examine the effect of material temperature and reduction ratio on friction coefficient during hot flat rolling. We carried out a single pass pilot hot flat rolling test at the temperatures range of $900{\sim}1200^{\circ}C$ and measured the spread of deformed material while reduction ratio varied from 20% to 40%. Materials used in this study were a high carbon steel and two alloy steels. The dimension of specimen used in hot rolling experiment was $50mm{\times}50mm{\times}300mm$. We performed a series of finite element simulation of the hot rolling process to compute the friction coefficient change in terms of steel grade and reduction ratio. Results showed that temperature dependency of friction coefficient is not noteworthy but the effect of reduction ratio on friction coefficient is quite large. For high carbon steel, friction coefficient at reduction ratio of 30% is lower than that at that of 20%. Meanwhile friction coefficient at reduction ratio of 40% was one and half times large compared with that at that of 20%. The effect of steel grade on friction coefficient was significant when reduction ration was large, e.g., 40%.

Mathematical Model for Cold Rolling and Temper Rolling Process of Thin Steel Strip

  • Lee, Won-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1296-1302
    • /
    • 2002
  • A mathematical model for cold rolling and temper rolling process of thin steel strip has been developed using the influence function method. By solving the equations describing roll gap phenomena in a unique procedure and considering more influence factors, the model offers significant improvements in accuracy, robustness and generality of the solution for the thin strip cold and temper rolling conditions. The relationship between the shape of the roll profile and the roll force is also discussed. Calculation results show that any change increasing the roll force may result in or enlarge the central flat region in the deformation zone. Applied to the temper rolling process, the model can well predict not only the rolling load but also the large forward slip. Therefore, the measured forward slip, together with the measured roll force, was used to calibrate the model. The model was installed in tile setup computer of a temper rolling mill to make parallel setup calculations. The calculation results show good agreement with the measured data and the validity and precision of the model are proven.

Simulation of square-to-oval single pass rolling using a computationally effective finite and slab element method

  • 이상매;김낙수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.237-242
    • /
    • 1991
  • Shape rolling has been studied experimentally by many researchers. As large numbers of process variables are involved and the material flow is difficult to analyze in shape rolling, the use of numerical techniques as an engineering tool becomes extremely attractive. The first numerical approach to the three-dimensional plastic deformation of rolling was to investigate side spread in flat rolling. Oh and Kobayashi conducted a pioneering study in this field by applying an extremum principle for rigid, perfectlyplastic materials combined with the numerical computation. Since then, several other researchers have used three-dimensional finite element method for analysing spread in rolling . In this investigation of shaperolling al the computer simulations of shape rolling were conducted using TASKS. To verify the predictive capabilities of TASKS the first example chosen was square-to-round shape rolling

A Study on Cepstrum Analysis for Wheel Flat Detection in Railway Vehicles (차륜의 찰상결함 진단을 위한 켑스트럼 분석 방법 연구)

  • Kim, Geoyoung;Kim, Hyuntae;Koo, Jeongseo
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.28-33
    • /
    • 2016
  • Since defects in the wheels of railway vehicles, which occur due to wears with the rail, cause serious damage to the running device, the diagnostic monitoring system for condition-based maintenance is required to secure the driving safety. In this paper, we studied to apply a useful Cepstrum analysis to detect periodic structure in spectrum among the vibration signal processing techniques for the fault diagnosis of a rotating body such as wheel. In order to analyze in variations of train velocity, the Cepstrum analysis was performed after a domain change of the vibration signal from time domain to rotation angle domain. When domains change, it is important to use a interpolation for a uniform interval of the rotation angle. Finally, the Cepstrum analysis for wheel flat detection was verified by using the vibration signal including the disturbance resulting from the rail irregularities and the vibration of bogie components.

Development of Roll-to- Flat Thermal Imprinting Equipment and Experimental Study of Large Area Pattern Replication on Polymer Substrate

  • Lee, Moon-G.;Lan, Shuhuai;Lee, Soo-Hun;Lee, Hye-Jin;Ni, Jun;Sung, Yeon-Wook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.307-314
    • /
    • 2009
  • Large area micro pattern replication has promising application potential in many areas. Rolling imprint process has been demonstrated as one of the most competitive processes for such micro pattern replication, because it has advantages in low cost, high throughput and high efficiency. In this paper, we developed a prototype of roll-to-flat(R2F) thermal imprint system for large area micro pattern replication process, which is one of the key processes in the fabrication of flexible displays. Experimental tests were conducted to evaluate the feasibility of system and the parameters' effect on the process, such as flat mold temperature, loading pressure and rolling speed. 100mm $\times$ 100mm stainless steel flat mold and commercially available polycarbonate sheets were used for the tests. The experimental results showed that the developed R2F system is suitable for fabrication of various micro devices with micro pattern over large area.

  • PDF

Analysis of wrinkle Initiation on Workpiece in Groove Rolling - Finite Element Analysis (공형압연에서 소재 주름흠 발생 해석 - 유한요소해석)

  • Na, D.H.;Cho, O.Y.;Lee, J.H.;Lee, Y.H.;Lee, Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.415-418
    • /
    • 2008
  • We propose a criterion which predicts wrinkle initiation on workpiece in groove rolling process based on finite element analysis. Fundamental idea introduced in the criterion is to examine the difference between flat rolling which don't' cause wrinkling at all and groove rolling which usually accompanies it. The proposed criterion assumes that irregular distribution of shear strain on workpiece during groove rolling is attributable to the initiation of wrinkling. The proposed criterion has been applied to roughing train in the rod and bar mill of SEAH BESTEEL Inc. A new design for 2nd pass (square roll groove) was suggested, machined and applied. Results reveal that the proposed criterion in this study could point out the location of wrinkle initiation during groove rolling and could reduce onset of wrinkle on final products.

  • PDF

Numerical Analysis and Experimental Study of Thread Rolling Process for Micro-sized Screws(Part II: Application to a Micro-screw with Diameter of 800㎛) (마이크로 체결부품 전조성형공정에 관한 해석 및 실험적 고찰(Part II: M0.8급 마이크로 스크류 전조공정 적용))

  • Song, J.H.;Lee, J.;Lee, H.J.;Lee, G.A.;Park, K.D.;Ra, S.W.;Lee, H.W.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.179-185
    • /
    • 2012
  • In this paper, it is proposed to produce high precision screws with a diameter of $800{\mu}m$ and a thread pitch of $200{\mu}m$ ($M0.8{\times}P0.2$) by means of a cold thread rolling process. In this part II of the study, the focus is on the production and reliability testing of the prototype $M0.8{\times}P0.2$ micro-screw. Designs for two flat dies were developed with the aid of the literature and previous studies. Process parameters during the cold thread rolling process were established through FE simulations. The simulation results showed that the threads of the micro-screw are completely formed through the rolling process. Prototype $M0.8{\times}P0.2$ micro-screw were fabricated with a high precision thread rolling machine. In order to verify the simulation results, the deformed shape and dimensions obtained from the experiment were compared with those from the simulations. Hardness and failure torque of the fabricated micro-screw were also measured. The values obtained indicate that the CAE based process design used in this paper is very appropriate for the thread rolling of micro-sized screws.

Optimal Design of flat rolling about Lead Wire for Productivity Improvement (리드용 와이어의 생산성 향상을 위한 평압연 최적설계)

  • Park, Chang Hyung;Kim, Jin Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.29-34
    • /
    • 2017
  • In this paper, we report a method of improving the productivity of lead wire fabricated through the rolling process by increasing its linear velocity. The most important point to consider when raising the linear velocity is that the original specifications must still be adhered to. In other words, the dimensional tolerance must be satisfied when increasing the linear velocity of the wire without causing cracks. However, if the linear velocity of the wire is increased, the degree of reduction must also be increased, which causes more damage to the wire and increases the load on its surface. Therefore, we studied a three step rolling process which can satisfy the specifications of the wire produced through the two step rolling process and improve the productivity. In this study, only the roll gap of the three-stage rolling roller is assumed to be a variable, while the other conditions are the same as the field conditions. In addition, through the PIANO (Process Integration, Design and Optimization) tool, the (optimum?) surface roughness and maximum stress are maintained.