• Title/Summary/Keyword: Flat glass

Search Result 302, Processing Time 0.033 seconds

The Effect of Thickness on Flexible, Electrical and Optical properties of Ti- ZnO films on Flexible Glass by Atomic Layer Deposition

  • Lee, U-Jae;Yun, Eun-Yeong;Gwon, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.196.1-196.1
    • /
    • 2016
  • TCO(Transparent Conducting Oxide) on flat glass is used in thin-film photovoltaic cell, flat-panel display. Nowadays, Corning(R) Willow Glass(R), known as flexible substrate, has attracted much attention due to its many advantages such as reliable roll-to-roll glass processing, high-quality flexible electronic devices, high temperature process. Also, it can be an alternative to flexible polymer substrates which have their poor stability and degradation of electrical and optical qualities. For application on willow glass, the flexibility, electrical, optical properties can be greatly influenced by the TCO thin film thickness due to the inherent characterization of thin film in nanoscale. It can be expected that while thick TCO layer causes poor transparency, its sheet resistance become low. Also, rarely reports were focusing on the influence of flexible properties by varying TCO thickness on flexible glass. Therefore, it is very important to optimize TCO thickness on flexible Willow glass. In this study, Ti-ZnO thin films, with different thickness varied from 0 nm to 50 nm, were deposited on the flexible willow glass by atomic layer deposition (ALD). The flexible, electrical and optical properties were investigated, respectively. Also, these properties of Ti-doped ZnO thin films were compared with un-doped ZnO thin film. Based on the results, when Ti-ZnO thin films thickness increased, resistivity decreased and then saturated; transmittance decreased. The Figure of Merit (FoM) and flexibility was the highest when Ti-ZnO thickness was 40nm. The flexible, electrical and optical properties of Ti-ZnO thin films were better than ZnO thin film at the same thickness.

  • PDF

Flat-panel CRT with channel guides

  • Vissenberg, M.C.J.M.;Ijzerman, W.L.;Cortenraad, H.M.R.;Hiddink, M.G.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.126-129
    • /
    • 2003
  • Electron beam guides hold the promise of a flat-panel display based on CRT technology. We propose to integrate the periodic focusing electrodes of such beam guides on a glass channel plate for a robust and simple design. The feasibility of this idea is tested numerically and experimentally.

  • PDF

MacMic System for Flat Panel Display

  • Lee, Ui-Taek;Bae, Gi-Seon;Park, Chang-Hyeon;Gwon, Sang-Jik
    • Information Display
    • /
    • v.4 no.2
    • /
    • pp.3-6
    • /
    • 2003
  • This paper describes a MacMic System developed for Flat Panel Display. The MacMic System usually is used for testing of Mother Glass of TFT and Color Filter. They are normally consisted of microscopy system, illumination system and panel stage system.

Greenhouse Gas Emission Inventory Calculation of Korean Glass Industry through the Bottom-up Production Process Analysis (상향식 공정분석을 통한 국내 유리산업의 온실가스 인벤토리 산정)

  • Paik, Chunhyun;Chung, Yongjoo;Yoo, Jonghoon
    • Korean Management Science Review
    • /
    • v.32 no.1
    • /
    • pp.101-111
    • /
    • 2015
  • The glass production is classified into an energy intensive industry. This study develops a systematic procedure to derive Greenhouse Gas (GHG) emission inventory for the Korean glass industry. Based on the bottom-up approach in which the energy intensity in each production process is characterized, the EBs (energy balances) of glass production processes are derived. And the GHG emission is calculated for each of four types of glasses-flat glass, container glass, fiber glass, and LCD glass.

Current Research Trend on Recycling of Waste Flat Panel Display Panel Glass (폐 평판디스플레이 패널유리의 재활용 연구 동향)

  • Shin, Dongyoon;Kang, Leeseung;Park, Jae Layng;Lee, Chan Gi;Yoon, Jin-Ho;Hong, Hyun Seon
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.58-65
    • /
    • 2015
  • Although Korea is a top market sharing and world leading producer and developer of flat panel display devices, relevant recycling technology is not up to her prestigious status. Besides, most of the waste glass arising from flat panel displays is currently land-filled. The present paper mainly reviews on development of recycling systems for waste TFT-LCD glass from end-of-life LCD TVs and monitors and TFT-LCD process waste of crushed glass particles with target end uses of raw material for high strength concrete pile and glass fibers, respectively. Waste LCD glass was recycled to fabricate ingredients for high strength concrete piles with enhanced physical properties and spherical foam products. The waste LCD glass recycling technology is already developed to fabricate long and short fibers at commercial level. In view of these, future R & D on waste LCD glass materials is to be directed toward implementation of commercial materials recycling system therefrom.

Study on the Heat Collecting Performance of Flat-Plate Solar Collector by the angle (평판형 태양열 집열기의 각도에 따른 집열성능 연구)

  • Ji, M.K.;Kong, T.W.;Bae, C.W.;Jeong, H.M.;Chung, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.316-321
    • /
    • 2000
  • In this study, heat collecting performance was study of flat plate solar collector by the angle. A method of study on were made turn out artificial sun by the angle of 0, 15, 30 degrees. The heat performances were measured the tube array surface temperature by thermo-couple. The winter season natural condition for 4 times on the angles of various general and emboss glass at optimum distance(0.68m) calculated of between sun and solar collector. To sum up temperature rise is appear more or less that emboss glass is all the better for general glass. The temperature variable at below of 30 degree was appear very less. The maximum performance of this system at that it is tilt angle of 30 with general glass is appear Q:11.54(kcal/min) and ${\Delta}T=18.9^{\circ}C$.

  • PDF

Vacuum In-Line Sealing by a Halogen Lamp Heating of Frit-Glass Seals for Flat Panel Display

  • Kwon, Sang-Jik;Hong, Kun-Cho;Lee, Jong-Duk;Whang, Ki-Woong;Park, Sun-Woo;Kwon, Yong-Bum
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.147-148
    • /
    • 2000
  • Sealing of two glass plates composing of FED panel was done in a vacuum chamber. Several factors related with a heating process of a frit glass were investigated, including comparisons with a conventional method.

  • PDF