• Title/Summary/Keyword: Flat Region

Search Result 492, Processing Time 0.028 seconds

Macrobenthic community on the soft-bottom around the Youngjong Island, Korea (영종도 주변해역의 저서동물 군집)

  • LIM Hyun-Sig;LEE Jae-Hac;CHOI Jin-Woo;Je Jong-Geel
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.5
    • /
    • pp.635-648
    • /
    • 1995
  • Macrobenthic fauna were collected seasonally using the van Veen Grab $(0,1/m^2)$ to investigate the benthic faunal assemblages on the soft-bottoms around the Youngjong Island during October 1991 to July 1992. A total of 266 species was identified. Of these polychaetes comprised 111 species $(41.7\%)$; crustaceans $75(28.2\%)$ molluscs, $59 (22.2\%)$ and others including echinoderms, $27(7.9\%)$. Mean density and biomass were estimated to be 498 $ind./m^2$ and 54.8$g./m^2$, respectively. Polychaetes were the most dominant faunal group in terms of abundance $(332\;ind./m^2)$ and number of species as well, whereas echinoderms were predominant in biomass $(332\;g./m^2)$. The dominant species were Mediomastus sp., Heteromastus sp., Nipponomysella oblongata, and Nephts polyranchia; the abundance of these species showed seasonal variations. The study area was divided into three regions by cluster analysis based on the similarity of species composition. The first region consisted of intertidal flat (G-I); the second, shallow subtital region of muddy sand (G-II); the third, channel region of mud sediments (G-III). The intertidal flat showed the highest density, and the channel was the lowest density, but the Highest in species diversity. Distribution of macrobenthic faunal assemblages of the study area seemed to be controlled by sedimentary facies and duration of tidal exposure.

  • PDF

Community Structure and Health Assessment of Macrobenthos in Tidal Flats along the West Coast of Korea in Spring and Summer (서해안 갯벌의 춘·하계 대형저서동물의 군집구조 및 건강도 평가)

  • Ong, Giho;Jeon, Seung Ryul;Koo, Jun Ho;Park, Jong-Woo;Jeung, Hee-Do;Kang, Jung-Ha;Cho, Yoon-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.500-509
    • /
    • 2021
  • This study investigated the characteristics of a macrobenthos community and sediment environment and assessed the health of tidal flats along the west coast of Korea. A survey was conducted from Ganghwa-do to Mokpo, Jeollanam-do in April (spring) and August (summer) 2017, and April (spring) 2018. The sediment grain sizes in the Chungcheongnam-do region were coarser, and the sediment in the Gyeonggi-do·Incheon, Jeollanam-do, and Jeollabuk-do regions were finer. A total of 140 macrobenthic species were collected from this study and using a cluster similarity analysis of the macrobenthos community, they were divided into four groups. Group2 was associated with Manila clam farm stations, and Ruditapes phillipinarum, Nephtys polybranchia and Lumbrineris nipponica were dominant. Group4 included some sites with finer sediment composed relatively, and Eteone longa and Nemertea unid. appeared at a high frequency. From the health assessment of the western tidal flat, the ISEP and BHI indices had a "High status," and the AMBI index had a "Good status." In conclusion, the tidal flats along the west coast of Korea have good ecological health. However, pollution indicator species such as Theora lata and Capitella capitata have appeared in some areas. Therefore, periodic administration and interventions are necessary to prevent deterioration of the tidal flat environment.

NUMERICAL SIMULATION OF SUPERSONIC FLOW USING POROUS AND ROUGH WALL BOUNDARY CONDITIONS (다공성 벽면(porous-wall)과 거칠기가 있는 벽면(rough-wall)에 과한 경계조건을 이용한 초음속 흐름의 수치모사)

  • Kwak, E.K.;Yoo, I.Y.;Lee, S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.104-111
    • /
    • 2009
  • The existing code which solves two-dimensional RANS(Reynolds Averaged Navier-Stokes) equations and 2-equation turbulence model equations was modified to enable numerical simulation of various supersonic flows. For this, various boundary conditions have been implemented to the code. Bleed boundary condition was incorporated into the code for calculating wall mean flow quantities. Furthermore, the boundary conditions for the turbulence quantities along rough surfaces as well as porous walls were applied to the code. The code was verified and validated by comparing the computational results against the experimental data for the supersonic flows over bleed region on a flat plate. Using the newly modified code, numerical simulations were performed and compared with other computational results as well as the experimental data for the supersonic flows over an oblique shock with a bleed region.

  • PDF

Numerical Simulation of In-Cylinder Flow for the Axi-symmetric Model Engine by Low Reynolds Number k-ε Turbulence Model (저레이놀즈수 k-ε 난류모형에 의한 축대칭 모형기관 실린더내 유동의 수치해석)

  • Kim, W.K.;Choi, Y.D.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.38-50
    • /
    • 1994
  • To improve the efficiency of internal combustion engines, it is necessary to understand mixed air-fuel in-cylinder flow processes accurately at intake and compression strokes. There is experimental and numerical methods to analyse in-cylinder flow process. In numerical method, standard $k-{\varepsilon}$ model with wall function was mostly adopted in in-cylinder flow process. But this type model was not efficiently predicted in the near wall region. Therefore in the present study, low Reynolds number $k-{\varepsilon}$ model was adopted near the cylinder wall and standard $k-{\varepsilon}$ model in other region. Also QUICK scheme was used for convective difference scheme. This study takes axisymmetric reciprocating model engine motored at 200rpm with a centrally located valve, incorporated 60 degree seat angie, and flat piston surface excluding inlet port. Because in-cylinder flow processes are undergoing unsteady and compressible, averaged cylinder pressure and inlet velocity at arbitrary crank angle are determined from thermodynamic analytic method and incylinder states at that crank angle are iteratively determined from the numerical analytic method.

  • PDF

A Study on the Fatigue Crack Propagation Behavior of $Al_2O_3/AC4C$ Composites Made by Squeeze Casting Process (용탕단조법으로 제조된 $Al_2O_3/AC4C$ 복합재료의 피로균열 전파거동에 관한 연구)

  • Yeo, In-Dong;Lee, Chi-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.15 no.4
    • /
    • pp.388-396
    • /
    • 1995
  • This study has been conducted with the purpose of examining the fatigue crack growth characteristics of $Al_2O_3$ short fiber reinforced aluminum matrix composites made by squeeze casting process with different applied pressure and binder amount. Fatigue crack growth experiments have been performed under constant load amplitude method with a fixed load ratio. The rate of crack propagation was decreased with binder amount as well as applied pressure. Also fatigue crack growth path in matrix was changed from flat to rough mode with an increase of applied pressure. In the composites, fatigue crack was propagated to interface between matrix and reinforcement at 10MPa, but it was propagated to reinforcement at 20MPa. The major reason of thee result was considered that interfacial bonding force and microstructure of matrix were improved due to an increase of applied pressure. Localized ductile striation in the composites was observed at low growth rate region and such a phenominon was remarkable with an increase of applied pressure. At high growth rate region, the propensity of fracture appearance was changed from interfacial debonding to reinforcement fracture with an increase of applied pressure.

  • PDF

A Novel Corner Detector using a Non-cornerness Measure

  • Park, Seokmok;Cho, Woon;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.253-261
    • /
    • 2017
  • In this paper, a corner detection method based on a new non-cornerness measure is presented. Rather than evaluating local gradients or surface curvatures, as done in previous approaches, a non-cornerness function is developed that can identify stable corners by testing an image region against a set of desirable corner criteria. The non-cornerness function is comprised of two steps: 1) eliminate any pixel located in a flat region and 2) remove any pixel that is positioned along an edge in any orientation. A pixel that passes the non-cornerness test is considered a reliable corner. The proposed method also adopts the idea of non-maximum suppression to remove multiple corners from the results of the non-cornerness function. The proposed method is compared with previous popular methods and is tested with an artificial test image covering several corner forms and three real-world images that are universally used by the community to evaluate the accuracy of corner detectors. The experimental results show that the proposed method outperforms previous corner detectors with respect to accuracy, and that it is suitable for real-time processing.

Velocity Field Measurement of Flow Around a Surface-Mounted Vertical Fence Using the Two-Frame PTV System (2-프레임 PTV를 이용한 수직벽 주위 유동장 해석)

  • Baek, Seung-Jo;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1340-1346
    • /
    • 1999
  • The turbulent shear flow around a surface-mounted vertical fence was investigated using the two-frame PTV system. The Reynolds number based on the fence height(H) was 2950. From this study, it is revealed that at least 400 instantaneous velocity field data are required for ensemble average to get reliable turbulence statistics, but only 100 field data are sufficient for the time-averaged mean velocity information. Various turbulence statistics such as turbulent intensities, turbulence kinetic energy and Reynolds shear stress were calculated from 700 instantaneous velocity vector fields. The fence flow has an unsteady recirculation region behind the fence, followed by a slow relaxation to the flat-plate boundary layer flow. The time-averaged reattachment length estimated from the streamline distribution is about 11.2H. There exists a region of negative Reynolds shear stress near the fence top due to the highly convex (stabilizing) streamline-curvature of the upstream flow. The large eddy structure in the separated shear layer seems to have significant influence on the development of the separated shear layer and the reattachment process.

Effects of Piston Shapes and Intake Flow on the Behavior of Fuel Mixtures in a GDI Engine

  • Kang, Jeong-Jung;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2027-2033
    • /
    • 2003
  • The purpose of this study is to investigate the stratification of fuel vapor with different in-cylinder flow, piston cavity and injection timings in an optically accessible engine. Three different piston shapes that are F(Flat), B(Bowl) and R(Re-entrance) types were used. The images of liquid and vapor fuel were captured under the motoring condition using Laser Induced Exciplex Fluorescence technique. As a result, at early injection timing of 270 BTDC, liquid fuel was evaporated faster by tumble flow than swirl flow, where most of fuel vapor were transported by tumble flow to the lower region and both sides of cylinder for the F-type piston. At late injection timing of 90 BTDC, tumble flow appears to be moving the fuel vapor to the intake side of the cylinder, while swirl flow convects the fuel vapor to the exhaust side. The concentration of mixture in the center region was highest in the B-type piston, while fuel vapor was transported to the exhaust side by swirl flow in F and R-type pistons. At the injection timing of 60 BTDC, the R-type piston was better for stratification due to a relatively smaller bowl diameter than the others.

An Experimental Study on the Transport of Turbulent Energy in the Transitional Boundary Layer (천이영역에서 난류에너지의 이동에 관한 실험적 연구)

  • 임효재;백성구;이원근
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.131-138
    • /
    • 2003
  • This paper considered the structural mechanism of transitional boundary layer by the experimental approach. In order to measure the turbulence quantity in the boundary layer, we made a wind tunnel with 400${\times}$190${\times}$2500 mm test section and a flat plate with well fabricated leading edge. Hot wire anemometer was used for acquiring the continuous turbulence signal which is processed by special software. The results of experiment show that the region where turbulence spot is dominant moves from near wall to overall layer and thus the anisotropy of velocity fluctuation shows so large value. Also the turbulence energy originally contained in low frequency band comes up to the high frequency band. Finally the turbulence model needs minimum two length scales to consider the pre-transition region.

A study on fluid flow and heat transfer around the circular cylinder located on a flat plate in crossflow (횡단류 내 평판 위에 놓인 원형 실린더 주위의 유동장 및 열전달에 관한 연구)

  • Lee, Gi-Baek;Son, Jeong-Ho;Yang, Jang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1458-1471
    • /
    • 1996
  • The present study is concerned with the heat transfer enhancement associated with a symmetrical or asymmetrical horseshoe vortex in front of and around the circular cylinder centered between the side walls of a wind tunnel. The static pressure measurements and the flow visualization in front of and around cylinders have been performed to determine the existence of horseshoe vortex. The hue-capturing method using the thermochromatic liquid crystals with great spatial resolution was used to obtain the local information of the endwall heat transfer coefficients. In case of one cylinder, the convective heat transfer coefficients of the region where the horseshoe vortex exists are larger than those of any other region. In case of two cylinders with tandem arrangement, the heat transfer rate of gap spacing (d/D= 1.5) is higher than that of gap spacings (d/D=2.0 or 2.5).