• Title/Summary/Keyword: Flat Plate structures

Search Result 182, Processing Time 0.022 seconds

Molecular Dynamics Simulation of Adhesion Processes

  • Cho, Sung-San;Park, Seungho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1440-1447
    • /
    • 2002
  • Adhesion of a hemispherical tip to the flat surface in nano-structures is simulated using the molecular dynamics technique. The tip and plates are modeled with the Lennard-Jones molecules. The simulation focuses on the deformation of the tip. Detailed descriptions on the evolution of interaction force, the energy dissipation due to adhesion hysteresis, the forma- tion-growth-breakage of adhesive junction as well as the evolution of molecular distribution during the process are presented. The effects of the tip size, the maximum tip approach, the tip temperature, and the affinity between the tip and the mating plate are also discussed.

Influence of Local Ultrasonic Forcing on a Turbulent Boundary layer (국소적 초음파 가진이 난류경계층에 미치는 영향)

  • Park, Young-Soo;Sung, Hyung-Jin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.17-22
    • /
    • 2005
  • An experimental study was carried out to investigate the effect of local ultrasonic forcing on a turbulent boundary layer. Stereoscopic particle image velocimetry (SPIV) was used to probe the characteristics of the flow. A ultrasonic forcing system was made by adhering six ultrasonic transducers to the local flat plate. Cavitation which generates uncountable minute air-bubbles having fast wall normal velocity occurs when ultrasonic was projected into water. The SPIV results showed that the wall normal mean velocity is increased in a boundary layer dramatically and the streamwise mean velocity is reduced. The skin friction coefficient ($C_{f}$) decreases $60\%$ and gradually recovers at the downstream. The ultrasonic forcing reduces wall-region streamwise turbulent intensity, however, streamwise turbulent intensity is increased away from the wall. Wall-normal turbulent intensity is almost the same near the wall but it increases away from the wall, In tile vicinity of the wall, Reynold shear stress, sweep strength and production of turbulent kinetic energy were decreased. This suggests that the streamwise vortical structures are lifted by ultrasonic forcing and then skin friction is reduced.

  • PDF

An Experimental Study on Lift Force Generation Resulting from Spanwise Flow in Flapping Wings

  • Hong, Young-Sun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.86-103
    • /
    • 2006
  • Using a combination of force transducer measurement to quantify net lift force, high frame rate camera to quantify and subtract inertial contributions, and Digital Particle Image Velocimetry (DPIV) to calculate aerodynamic contributions in the spanwise plane, the contribution of spanwise flow to the generation of lift force in wings undergoing a pure flapping motion in hover is shown as a function of flapping angle throughout the flapping cycle. These experiments were repeated at various flapping frequencies and for various wing planform sizes for flat plate and span wise cambered wings. Despite the previous identification of the importance of span wise fluid structures in the generation of lift force in flapping wings throughout the existing body of literature, the direct contribution of spanwise flow to lift force generated has not previously been quantified. Therefore, in the same manner as commonly applied to investigate the chordwise lift distribution across an airfoil in flapping wings, spanwise flow due to bulk flow and rotational fluid dynamic mechanisms will be investigated to validate the existence of a direct component of the lift force originating from the flapping motion in the spanwise plane instead.

Direct Numerical Simulations of Turbulent Boundary Layer using OpenFOAM and Adapted Mesh (OpenFOAM과 어댑티드 격자를 이용한 난류 경계층의 직접 수치 모사)

  • Lee, Sang Bong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.3
    • /
    • pp.210-216
    • /
    • 2016
  • Direct numerical simulations of a spatially developing turbulent boundary layer on a flat plate have been performed to verify the applicability of OpenFOAM and adapted mesh with prism layers to turbulent numerical simulation with high fidelity as well as provide a guideline on numerical schemes and parameters of OpenFOAM. Reynolds number based on a momentum thickness at inlet and a free-stream velocity was Reθ=300. Time dependent inflow fields with near-wall turbulent structures were generated by a method of Lund et al. (1998), which was to extract instantaneous velocity fields from an auxiliary simulation with rescaled and recycled velocities at inlet. To ascertain the statistical characteristics of turbulent boundary layer, the mean profiles of streamwise velocity and turbulent intensities obtained from structured and adapted meshes were compared with the previous data.

Approximate analyses of reinforced concrete slabs

  • Vecchio, F.J.;Tata, M.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.1-18
    • /
    • 1999
  • Procedures are investigated by which nonlinear finite element shell analysis algorithms can be simplified to provide more cost effective approximate analyses of orthogonally-reinforced concrete flat plate structures. Two alternative effective stiffness formulations, and an unbalanced force formulation, are described. These are then implemented into a nonlinear shell analysis algorithm. Nonlinear geometry, three-dimensional layered stress analyses, and other general formulations are bypassed to reduce the computational burden. In application to standard patch test problems, these simplified approximate analysis procedures are shown to provide reasonable accuracy while significantly reducing the computational effort. Corroboration studies using various simple and complex test specimens provide an indication of the relative accuracy of the constitutive models utilized. The studies also point to the limitations of the approximate formulations, and identify situations where one should revert back to full nonlinear shell analyses.

Analytical study of buckling profile web stability

  • Taleb, Chems eddine;Ammari, Fatiha;Adman, Redouane
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.147-158
    • /
    • 2015
  • Elements used in steel structures may be considered as an assembly of number of thin flat walls. Local buckling of these members can limit the buckling capacity of axial load resistance or flexural strength. We can avoid a premature failure, caused by effects of local buckling, by limiting the value of the wall slenderness which depend on its critical buckling stress. According to Eurocode 3, the buckling stress is calculated for an internal wall assuming that the latter is a simply supported plate on its contour. This assumption considers, without further requirement, that the two orthogonal walls to this wall are sufficiently rigid to constitute fixed supports to it. In this paper, we focus on webs of steel profiles that are internal walls delimited by flanges profiles. The objective is to determine, for a given web, flanges dimensions from which the latter can be considered as simple support for this web.

Analytical Model to Predict Punching Shear Strength of Flat Plate Structures (플랫 플레이트의 뚫림전단 성능에 관한 해석적 연구)

  • Kim, Min-Sook;Lee, Young-Hak;Kim, Hee-Cheul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.211-214
    • /
    • 2010
  • 플랫 플레이트 시스템은 기둥 주위의 국부적인 응력집중 현상으로 인한 뚫림전단 파괴에 대해 취약하다. 따라서 유한요소해석을 통해 이러한 플랫 플레이트 시스템의 뚫림전단 성능을 평가하고자 한다. 슬래브의 전단을 고려하기 위하여 Reissner-Mindlin 가정을 바탕으로 한 등매개변수 감절점 쉘 요소를 적용하였다. 콘크리트의 재료적 비선형 거동을 고려하기 위해 압축거동은 수정압축장 이론을 적용하였으며 인장강성효과 또한 콘크리트 재료모델에 반영하였다. 기존 실험결과와의 비교를 통해 타당성을 검증하고자 하였다. 비교 결과, 약 16%의 오차율을 보였으며 보강비가 낮은 실험체에 비해 보강비가 높은 실험체가 실험결과에 가까운 값을 예측하는 것으로 나타났다.

  • PDF

Optimal Approximated Development of General Curved Plates Based on Deformation Theory (변형 이론을 기반으로한 곡면의 최적 근사 전개)

  • 유철호;신종계
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.3
    • /
    • pp.190-201
    • /
    • 2002
  • Surfaces of many engineering structures, specially, those of ships and airplanes are commonly fabricated as doubly curved shapes as well as singly curved surfaces to fulfill functional requirements. Given a three dimensional design surface, the first step in the fabrication process is unfolding or planar development of this surfaces into a planar shape so that the manufacturer can determine the initial shape of the flat plate. Also a good planar development enables the manufacturer to estimate the strain distribution required to form the design shape. In this paper, an algorithm for optimal approximated development of a general curved surface, including both singly and doubly curved surface is developed in the sense that the strain energy from its planar development to the design surface is minimized, subjected to some constraints. The development process is formulated into a constrained nonlinear programming problem, which is on basis of deformation theory and finite element. Constraints are subjected to characteristics of the fabrication method. Some examples on typical surfaces and the practical ship surfaces show the effectiveness of this algorithm.

Active Controll of Flow Noise Sources of Flat Plate Using Piezo Film (피에조 필름을 이용한 평판에서의 유동유기 소음원의 능동제어)

  • Shin, Seung-Yeol;Song, Woo-Seog;Lee, Seung-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.924-927
    • /
    • 2004
  • Measurements of fluctuating wall pressures were made with a linear array of 16 piezo-electric transducers beneath a fully-developed turbulent boundary layer. The piezoelectric bimorph actuator applied in this experiment has bonding structures of each polarity to make out-of-plane displacements rather than in-plane ones by using piezoelectric effect To specify the boundary layer characteristics at the location where the actuation was applied, the wall friction coefficients and $Re_\theta$ were measured by using the CPM method. The actuating frequency for the bimorph film was determined according to the priori bursting frequency from boundary layer parameters. The reduction of convecting energies in wave-number space was clearly observed at the specified actuating frequencies.

  • PDF

Experimental Study of Flow Near a Flat Plate Around a Row of Inclined Jets (평판 상에서 경사 분류열 부근의 유동에 대한 실험적 연구)

  • Kim, Eun-Young
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.39-44
    • /
    • 2011
  • An experimental method, based upon wall visualizations, has been developed to observe air flow near a plane wall around a row of five $45^{\circ}$ inclined jets discharging into a cross stream. This study concerns the variation of injection rate R which is one of the most important parameters governing this flow type. The Results are concentrated on the spatial evolution of two lobes with R. These structures are fastened to jets downstream edge and exist for very low injection rate values which are an indication of jets takeoff at the immediate downstream of injection orifices. The velocity rate of 0.42 marks a change in the structure alimentation system.