• Title/Summary/Keyword: Flat Foot

Search Result 131, Processing Time 0.027 seconds

Dynamic Simulation of Modifiable Bipedal Walking on Uneven Terrain with Unknown Height

  • Hong, Young-Dae;Lee, Ki-Baek
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.733-740
    • /
    • 2016
  • To achieve bipedal walking in real human environments, a bipedal robot should be capable of modifiable walking both on uneven terrain with different heights and on flat terrain. In this paper, a novel walking pattern generator based on a 3-D linear inverted pendulum model (LIPM) is proposed to achieve this objective. By adopting a zero moment point (ZMP) variation scheme in real time, it is possible to change the center-of-mass (COM) position and the velocity of the 3-D LIPM throughout the single support phase. Consequently, the proposed method offers the ability to generate a modifiable pattern for walking on uneven terrain without the necessity for any extra footsteps to adjust the COM motion. In addition, a control strategy for bipedal walking on uneven terrain with unknown height is developed. The torques and ground reaction force are measured through force-sensing resisters (FSRs) on each foot and the foot of the robot is modeled as three virtual spring-damper models for the disturbance compensation. The methods for generating the foot and vertical COM of 3-D LIPM trajectories are proposed to achieve modifiable bipedal walking on uneven terrain without any information regarding the height of the terrain. The effectiveness of the proposed method is confirmed through dynamic simulations.

Development of a Portable Gait Phase Detection System for Patients with Gait Disorders

  • Ahn Seung Chan;Hwang Sung Jae;Kang Sung Jae;Kim Young Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.3
    • /
    • pp.145-150
    • /
    • 2005
  • A new gait detection system using both FSR (force sensing resistor) sensors and a gyrosensor was developed to detect various gait patterns. FSR sensors were put in self-designed shoe insoles and a gyrosensor was attached to the heel of a shoe. An algorithm was also developed to determine eight different gait transitions during four gait phases: heel-strike, foot-flat, heel-off and swing. The developed system was evaluated from nine heathy mans and twelve hemiplegic patients. Healthy volunteers were asked to walk in various gait patterns: level walking, fore-foot walking and stair walking. Only the level walking was performed in hemiplegic patients. The gait detection system was compared with a optical motion analysis system and the outputs of the FSR sensors. In healthy subjects, the developed system detected successfully more than $99\%$ for both level walking and fore-foot walking. For stair walking, the successful detection rate of the system was above$97\%$. In hemiplegic patients, the developed system detected approximately 98% of gait transitions. The developed gait phase detection system will be helpful not only to determine pathological gait phases but also to apply prosthetics, orthotics and functional electrical stimulation for patients with various gait disorders.

A Case Report of Treatment of Heterotrophic Calcification in Pseudohypoparathyroidism (가성 부갑상선 기능저하증의 이형 석회화 치험례)

  • Yoon, Sung-Won;Song, Jea-Yong;Kim, Chung-Hun
    • Archives of Plastic Surgery
    • /
    • v.37 no.3
    • /
    • pp.281-284
    • /
    • 2010
  • Purpose: Pseudohypoparathyroidism is a hereditary disorder characterized by symptoms and signs of hypoparathyroidism, typically in association with distinctive skeletal and developmental defects. Hypoparathyroidism is caused by a insufficient end-organ response to PTH (parathyroid hormone). Hypoparathyroidism consists of four types in which the most common form, pseudohypoparathyroidism-Ia, accompany with Albright's hereditary osteodystrophy. We experienced a case of a woman who had been suffering from calcified mass on left foot, diagnosed Albright's hereditary osteodystrophy. Methods: We present a case of a 24-year-old Korean female who visited plastic surgery department with a painful mass on dorsum of the left foot. On the physical exam, bony hard and painful mass, fixed to dermis, was noted. Plain X-ray films demonstrate suspicious calcification on subcutaneous tissue of dorsum of the left foot. The patient was diagnosed pseudohypoparathyroidism 2 years ago at the plastic surgery department. At the visiting time, the laboratory results were within normal range even though the patient actually had a disease. The reason is because the patient has been treated with Vit.D, calcium replacement therapy and thyroid hormone therapy. Moreover, the patient has been treated with anticonvulsant agents due to epilepsy. On the brain computer tomography (CT), calcification was noted on the basal ganglia and dentate nucleus. So we decided the total excision of entire mass from the left foot. Results: We excised main mass with numerous pinhead sized masses which were scattered around the main mass. The $6.0{\times}4.0{\times}0.5\;cm$ sized main mass was bony hard, and its surface was flat and margin was irregular. The permanent biopsy was confirmed that the main mass and all the scattered tiny masses were heterotopic calcification. The patient did not suffer from the pain after the mass excision. The wound has been healed without any problem. Conclusions: Heterotrophic calcification is often accompanied with pseudohypoparathyroidism, but such a huge one is uncommon. We report a case of pseudohypoparathyroidism with heterotrophic calcification developed in dorsum of left foot who was diagnosed by excisional biopsy.

The Effect of Plantar Foot Pressure Negotitating Obstacles in the Elderly

  • Seo, Kyo-Chul;Kim, Hyeun-Ae;Kim, Hee-Tak;Kim, Sung-Gyung;Kim, Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.6
    • /
    • pp.15-22
    • /
    • 2011
  • Purpose: This research investigated falls due to obstacles that occur among elderly people by assessing changes in the values of plantar foot force, peak force, and plantar foot pressure in elderly subjects while they were stepping over obstacles of different heights. Methods: The subjects were 20 elderly people aged 70-80 years; Pressure was measured on flat ground(0 cm), and after installing obstacles of 8 cm and 12 cm using the F-scan system, which is a resistance-type pressure sensor. A one-way analysis of variance was performed to compare pressure on each part of the foot according to various heights after collecting data using the Tekscan program. The least significant difference test was used for the post-hoc analysis, A p-value <0.05 was considered significant. Results: The force value for the toe area (parts 1, and 2) and contact pressure increased significantly with the 12 cm obstacle (p<0.05). The peak force value and the peak contact pressure for part 1 increased significantly with the 12 cm obstacle (p<0.05). Conclusion: Larger changes appeared in the functions and structure of the foot while subjects walked over obstacles of different heights compared to flatland walking. This result suggests that people have safety strategies to prevent falls, and that there is a need for a more realistic approach through practice to overcome obstacles of various heights to prevent falls.

Gait Control on Slope Way using Zero Moment Point for Robot (Zero Moment Point를 이용한 이족 보행 로봇의 경사로 걸음새 제어에 관한 연구)

  • Um, Seung-Hyun;Lim, Mee-Seub;Lim, Joon-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.530-532
    • /
    • 2006
  • In this paper, we propose stable walking algorithm using ZMP for the biped robot in the slope-way. At first, we define discrete state variables that classified stable area and unstable area by center of mass from ZMP during slope-way walking. For the stable walking gait, the discrete state controller for determining the high-level and low-level decision making are designed. The high-level decision making is composed of the discrete state variables; left foot support phase, right foot support phase, flat-way, and slope-way. Then the continuous state controller is implemented for the low-level decision making using ZMP.

  • PDF

New record of two marine synchaetid rotifers (Monogononta: Synchaeta) from Korea

  • Yang, Hee-Min;Min, Gi-Sik
    • Journal of Species Research
    • /
    • v.11 no.3
    • /
    • pp.174-179
    • /
    • 2022
  • In this study, we identified two marine synchaetid rotifers, Synchaeta grimpei Remane, 1929 and S. vorax Rousselet, 1902, in Korea, which are the first synchaetid rotifers collected from a marine environment in the country. Prior to this study, all six synchaetids recorded in Korea were collected from freshwater environments. The morphological characteristics of both species are consistent with those recorded in previous studies of each species. Synchaeta grimpei is distinguished from other synchaetid rotifers by its cone-shaped body, wide and flat apical field, indistinct auricles, and long foot with two separated small toes. The morphological characteristics of Korean S. vorax specimens were most similar to the original description of Rousselet (1902), with its slender and cylindrical trunk shape, strongly convex apical field, and short foot with two small, separated toes. The rami of the Korean S. vorax specimen contained one frontal hook and several distinct and large teeth. Here, we provide the morphological diagnoses of the two synchaetid rotifers and the sequences of the partial mitochondrial cytochrome c oxidase subunit I (COI) of the two species.

Analysis of Plantar Foot Pressure according to Insole Types during Treadmill Gait (트레드밀 보행시 인솔 형태 변화에 따른 족저압력 분석)

  • Woo, Jung-Hwi;Lee, Joong-Sook;Yang, Jeong-Ok;Lee, Bom-Jin;Bae, Kang-Ho;Han, Dong-Wook;Park, Sang-Muk;Bae, Jin-Woo
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.1
    • /
    • pp.113-122
    • /
    • 2015
  • Objective : The purpose of this study was to analyze the foot-pressure distribution of 2D(2 dimensional form) & 3D(3 dimensional form; a customized arch-fit for posture correction) insoles for assessing their biomechanical functionality. Background : Recently there has been increased interest in both foot health and foot pain patients. Analysis of the plantar pressure was often used to solve the problems of the foot displayed by such people as rheumatoid arthritis patients. Method : Subjects who participated in this study were 17 female university students who had no previous injury experience in lower limbs and a normal gait pattern. The shoe size of all subjects was 240 mm. Two models of insoles of 2D(typical flat insole - 2 dimensional form) and 3D(special production - 3 dimensional form) were selected for the test. Using the Pedar-X system and Pedar-X insoles, 4.0 km/h of walking speed, and a compilation of 50 steps walking stages were used to analyze foot-pressure distribution. Results : Results of the foot-pressure distribution and biomechanical functionality on each insole were as follows; analyses of mean plantar pressure, maximum plantar pressure, maximum vertical GRF, and plantar pressure curve shape all showed overall low plantar pressure and GRF. Conclusion : This can be evaluated as an excellent insole for low levels on the plantar pressure and GRF. Therefore, it is possible to conclude that according to this analysis the 3D Customized Arch-fit Insole was better than 2D insole on the basis of these criteria.

The Comparison of Lower Extremity Muscle Activities according to Different Longitudinal arch and Treadmill Inclination (세로발활 높이와 트레드밀 경사도 차이에 따른 하지의 근활성도 비교)

  • Kim, Eun-Young;Kim, Yeon-Ju;Kim, Keun-Jo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4459-4466
    • /
    • 2011
  • The purpose of this study was to compare the lower extremity muscle activities according to the different longitudinal arch and treadmill inclination and to provide basic data on treadmill walking exercise. The selected 17 subjects who had not lower extremity injury and ROM limitation were recruited in this study. The longitudinal arch was divided into normal foot and flat foot. The inclinations of the treadmill were $0^{\circ}$, up hill $5^{\circ}$, $10^{\circ}$, $15^{\circ}$, down hill $5^{\circ}$, $10^{\circ}$ and $15^{\circ}$. The electromyography was used to analyze the muscle activity of rectus femoris, biceps femoris, tibialis anterior, gastrocnemius lateralis and medialis. There were significant differences between the inclination $0^{\circ}$ and down hill $15^{\circ}$. There was no interactive effect of treadmill inclination on the longitudinal arch. The activity difference of lower extremity muscle was not conspicious. There existed the interactive effect between the longitudinal arch and muscle activity. The contrast test within subjects showed positively in the rectus femoris and gastrocnemius medialis, biceps femoris and gastrocnemius medialis. The different longitudinal arch did not influence on the effect(p>.05). There was significant difference between the normal foot and the flat foot. So it is necessary to carry out the long term study.

The Analysis of GRF during Golf Swing with the Slopes (골프 스윙 시 경사면에 따른 지면 반력 분석에 관한 연구)

  • Moon, G.S.;Choi, H.S.;Hwang, S.H.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.187-194
    • /
    • 2007
  • The purpose of this study is to determine the characteristics of ground reaction force(GRF) in golf swing for various slopes of flat lie and uphill lies of 5 and 10 degrees. Five right-handed professional golfers were selected for the experiment and the 7 iron club was used. We used four forceplates to measure GRF and synchronized with the three-dimensional motion analysis system. Results showed that slope did not affect the total time for golf swing, but the time until the impact had a tendency to slightly increase for the uphill lie(p<0.05). The medial-lateral GRF of the right foot increased toward the medial direction during back swing, but less increases were found with the angle of uphill lie(p<0.05). The GRF of the left foot increased rapidly toward the medial direction at the uncocking and the impact during down swing, but decreased with the increase in the angle of uphill lie(p<0.05). The anterior-posterior GRF of both feet showed almost the same for different slopes. With the slopes, the vertical GRF of the right foot increased, but the vertical GRF of left foot decreased(p<0.05). Uphill lies would have negative effect to provide the angular momentum during back swing, restricting pelvic and trunk rotations, and to provide the precise timing and strong power during down swing, limiting movements of body's center of mass. The present study could provide valuable information to quantitatively analyze the dynamics of golf swing. Further study would be required to understand detailed mechanism in golf swing under different conditions.

A Study on Interaction Between Pain Scale and Disability Index Owing to Gait Pattern (정상인들의 걸음형태에 따른 요통정도와 장애지수와의 관련성 조사)

  • Kwon, Hyeok-Soo
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.10 no.1
    • /
    • pp.103-116
    • /
    • 2004
  • The purpose of this study was to investigate between low back pain scale and disability index owing to gait pattern. For the period of February 1 to February 29, 2004, we had conducted a questionnaire and direct interview with 100 persons lived in Daejeon. The result were as follows: 1. The stride length of experimental group. the male was $49.9{\pm}12.9cm$. the female $45.7{\pm}12.9cm$ and the width of feet, the male was $13.5{\pm}5.7cm$, the female $12.2{\pm}4.8cm$. 2. The Fick angle of all subjects was showed in external disposition, the left angle showed in asymmetry, the male was $11.0{\pm}5.7^{\circ}$, the female $8.5{\pm}1.3^{\circ}$. 3. The foot arch was similar to sex as a weight bearing and non-weight bearing, the male was $1.3{\pm}0.8cm$, the female $1.3{\pm}0.9cm$. 4. The impedimental index according to back pain grade, men was a lower than women, the male was $5.7{\pm}6.9$ and the female $7.2{\pm}5.3$. 5. The relation to difference between foot arch and disability index according to back pain grade as a weight bearing and non-weight bearing, the higher foot arch, the higher back pain grade was statistically significance(p<.05). 6. The relation between width of feet and disability index according to back pain grade, the wider width of feet, the higher back pain grade was statistically significance(p<.01). 7. The relation between stride length and disability index according to back pain grade, the wider stride length, the higher back pain grade was statistically significance(p<.05).

  • PDF