• Title/Summary/Keyword: Flat Die Extrusion

Search Result 14, Processing Time 0.032 seconds

Effects of die cooling on change of extrusion characteristics of Al-Mn-based thin-walled flat multi-port tube (금형 냉각이 Al-Mn계 다중압출 평판관의 압출 특성 변화에 미치는 영향)

  • Young-Chul Shin;Seong-Ho Ha;Tae-Hoon Kang;Kee-Ahn Lee;Seung-Chul Lee
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.63-71
    • /
    • 2023
  • In order to increase the extrusion production speed of aluminum, extrusion die cooling technology using liquid nitrogen has recently attracted a lot of attention. Increasing the extrusion speed increases the temperature of the bearing area of extrusion dies and the extrusion profile, which may cause defects on the surface of extruded profile. Extrusion die cooling technology is to directly inject liquid nitrogen through a cooling channel formed between the die and the backer inside the die-set. The liquid nitrogen removes heat from the die-set, and gaseous nitrogen at the exit of the channel, covers the extrusion profile of an inert atmosphere reducing the oxidation and the profile temperature. The aim of this study is to evaluate the cooling capacity by applying die cooling to extrusion of Al-Mn-based aluminum alloy flat tubes, and to investigate the effects of die cooling on the change in extrusion characteristics of flat tubes. Cooling capacity was confirmed by observing the temperature change of the extrusion profile depending on whether or not die cooling is applied. To observe changes in material characteristics due to die cooling, surface observation is conducted and microstructure and precipitate analysis are performed by FE-SEM on the surface and longitudinal cross section of the extruded flat tubes.

Analytical Considerations on Some Design Parameters of Flat-Die Extrusion Processes (평금형 압출공정 설계 인자에 대한 해석적 고찰)

  • Lee C. H.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.98-101
    • /
    • 2001
  • In the present study, several design parameters of the flat-die extrusion process are investigated using the rigid-plastic finite element method. The effect of loaction of extrusion profile, arrangement of multiple extrusion profiles, and design of various die land has been investigated through the analysis. Several numerical examples of flat-die extrusion, such as C-section, multiple U- shape, and window guide extrusion, are analyzed. From the comparative study, the effect of design parameters is investigated. In each example, comparing the velocity distribution with that of the original design, it has been shown that the design modification affords much more uniform distribution of axial velocity

  • PDF

The Analytical Consideration for Several Design Parameters of Flat-Die Extrusion Processes (평금형 압출공정 설계 인자에 대한 해석적 고찰)

  • 이창희;양동열
    • Transactions of Materials Processing
    • /
    • v.10 no.7
    • /
    • pp.551-557
    • /
    • 2001
  • In the present study, several design parameters of the flat-die extrusion process are investigated using the finite element method. The effects of the location of an extrusion profile, arrangement of multiple extrusion profiles, and the design of various die land have been investigated through the analysis. Several numerical examples of flat-die extrusion of such as C-section, multiple U-shape, and a window guide section, are analyzed. From the comparative study, the effect of design parameters is investigated. In each example, comparing the velocity distribution with that of the original design, it has been shown that the design modification affords more uniform distribution.

  • PDF

Minimization of Die Wear Rate by Using Multi-Objective Optimization in Three-Dimensional Extrusion Processes (3차원 압출 공정에서 다목적 최적화 기법을 이용한 금형 마모율의 최소화)

  • Lee S. R.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.262-265
    • /
    • 2005
  • A shape optimization of flow guide is accomplished to minimize the wear rate of die in three-dimensional flat-die extrusion processes. In order to achieve the balanced flow and the uniformed distribution of the effective strain during the extrusion, a multi-objective optimization is implemented. During the process of optimization formulation, the flow balance and the deviation of strain is considered as constrained conditions. The proposed approach is applied to an extrusion of H section. Through the optimization, it has been confirmed that the wear rate of die can be minimized satisfying the constraint.

  • PDF

Numerical Simulation of the Flat Die for Shape Optimization in the Single-screw Extrusion Process

  • Joon Ho Moon;See Jo Kim
    • Elastomers and Composites
    • /
    • v.57 no.4
    • /
    • pp.147-156
    • /
    • 2022
  • In this study, we chose a flat die to optimize a general die geometry. The optimization was aimed at obtaining a uniform velocity distribution across the exit of the die. For the optimization, the input and output design parameters were randomly computed, and response surfaces were generated to obtain statistical data for the minimum and maximum sensitivities computed during optimization. Subsequently, object functions with constraints were numerically computed to obtain the minimum errors in the velocity difference (i.e., variable "Outp" in this study). Finally, we obtained the candidate optimized dataset. Note that the current numerical computations were simultaneously conducted for an entire extruder, i.e., screw plus die. The numerical outlet velocity distributions in the modified die geometry tended to be much more uniform than the conventional distributions in the current optimization processes for this specific flat die.

Experimental investigation on the flow control in non-axisym- metric flat die extrusion-II (비축대칭 평금형 압출에서 유동제어에 관한 실험적 연구-II)

  • 김영호;배원병;강범수;박재우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.130-136
    • /
    • 1997
  • The velocity distrubution at the exit of extrusion die depends on the width of bearing land very much. When uniform bearing land without flow guide is used, the material which is extended through the same die does not, deflect to the constant direction, but when the flow guide is equipped and then the volume compensation is done accurately, the material deflects to one constant direction. Therfore, the part of problem can be known exactly, and extrusion products of straight shape can be produced by the corrected bearing land width.

  • PDF

Design of punch shape for reducing the punch wear in the backward extrusion (후방 압출 펀치의 마멸 저감을 위한 금형 형상 설계)

  • 박태준;이동주;김동진;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.575-578
    • /
    • 2000
  • Die design to minimize the die wear in the cold forging process is very important as it reduce the production cost and the increase of the production rate. The quantitative estimation for the die wear is too hard because the prediction of the die wear is determined with many process variables. So, in this paper, the optimal shape of the backward extrusion punch is newly designed through the FE-analysis considering the surface expansion and Archard's wear model in order to reduce the rapid wear rate that is generated for the backward extrusion product exceeding the forming limit. The main shape variables of the backward extrusion punch are the flat, angle, and round of the punch nose part. As the flat and angle of the punch nose are larger, the surface expansion is reduced. and, the wear rate is decreased according to the reduction of the punch round. These results obtained through this study are applied to the real manufacturing process, it is implemented the reduction of the wear rate.

  • PDF

A Study on the Forming Characteristics of Radial Extrusions (레이디얼압출의 성형특성에 관한 연구)

  • 이수형;황병복
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.604-611
    • /
    • 1999
  • This paper is concerned with the family of parts that generally feature a central hub with radial protrusions. As opposed to conventional forward and backward extrusion, in which the material flows in a direction parallel to that of the punch or die motion, the material flows perpendicular to the punch motion in radial extrusion. Three variants of radial extrusion of a collar or flange are investigated. Case I involves forcing a cylindrical billet against a flat die, Case II involves deformation against a stationary punch recessed in the lower die, and Case III involves both the upper and lower punches moving together toward the center of the billet. Extensive simulational work is performed with each case to see the process conditions in terms of forging load, balanced and symmetrical flow in the flange. Also, the effect of the gap size and die corner radii to the material flow are investigated. In this study, the forming characteristics of radial extrusion will be considered by comparing the forces, shapes etc. The design factors during radial extrusion are investigated by the rigid-plastic FEM simulation.

  • PDF

Design of Punch Shape for Reducing the Punch Wear in the Backward Extrusion (후방 압출 펀치의 마멸 저감을 위한 펀치 형상 설계)

  • Kim Dong Hwan;Lee Jung Min;Kim Byung Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.180-187
    • /
    • 2004
  • Die design to minimize the die wear in the cold forging process is very important as it reduce the production cost and the increase of the production rate. The quantitative estimation fur the die wear is too hard because the die wear is caused by many process variables. So, in this paper, the optimal shape of the backward extrusion punch is newly designed through the FE-analysis considering the surface expansion and Archard wear model in order to reduce the rapid wear rate that is generated for the backward extruded products exceeding the forming limit. The main shape variables of the backward extrusion punch are the flat diameter, angle, and round of the punch nose part. As the flat diameter and angle of the punch nose are larger, the surface expansion is reduced and the wear rate is decreased according to the reduction of the punch round. These results obtained through this study can be applied to the real manufacturing process.

Experimental Investigation on the Flow Control in Non-Axisymmetric Flat Die Extrusion-1 (비축대칭 평금형 압출에서 유동제어에 관한 실험적 연구-I)

  • Bae, W.B.;Kim, Y.H.;Park, J.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.136-141
    • /
    • 1996
  • In this paper, the design variables of the extruded parts involving flat die through model experiment are investigated to overcome some current problems such as bending and twisting and get more improved quality products. Above all, the deformation behavior is analyzed in experiment and investigated flow charactristics inside container. Finally, the straight extruded product is obtained by modified bearing land width on the basis of the exit velocities distribution from bended and twisted products.

  • PDF