• Title/Summary/Keyword: Flashover Voltage

Search Result 162, Processing Time 0.024 seconds

Flashover Characteristics of the Horizontal Air Gaps Caused by Combustion Flames (연소화염에 의한 수평배치 공기갭의 섬락전압 특성)

  • 김인식;김이국;김충년;지승욱;이상우;이광식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.1
    • /
    • pp.27-34
    • /
    • 2002
  • In this paper, characteristics of the ac and dc flashover voltage in the horizontal air gap of a needle-needle electrode system were investigated when the combustion flame was present near the high-voltage electrode. In order to examine the flashover phenomena and the corona inception voltages caused by flame we measured the voltage and current waveforms when the corona and the flashover was occurred. We also observed, as increasing the applied voltages, the deflection or fluctuation phenomena in the shape of flames caused by the corona wind and the coulomb's force. As the results of an experimental investigation, we found that the reduction of flashover voltages, in comparison with the no-flame case, are 62.7[%] for k=1.0, 34.2[%] for h=5[cm], 27.3[%] for h=7[cm] and 21.4[%] for h=9[cm] when ac voltage is applied.

A Study on the Surface Corona Discharge in the Gas with different Mixing Ratio of Air to $SF_6$ ($SF_6$와 공기의 혼합기체중에서의 연면 코로나 방전)

  • 전춘생;조기선;우호환
    • 전기의세계
    • /
    • v.26 no.6
    • /
    • pp.78-85
    • /
    • 1977
  • This paper studies flashover voltage and surface corona loss of A.C and D.C in the mixed gas of air and SF$_{6}$ for solid insulators P.V.C, arcylic, glass and bakelite in two cases. In one case, those solids are covered with transformer oil and the other case, those solids are not covered with it. 1) The flashover voltage for each solids in SF$_{6}$ is more than three times compared with that in the air. The flashover voltage for P.V.C is the highest and then arcylic, glass, bakelite in a decreasing order. 2) The more the amount of SF$_{6}$ in the mixing ratio, the less corona loss. The P.V.C shows the least amount of corona loss and the bakelite the largest. 3) Compared with the corona loss of positive polarity and the negative polarity, the former has less corona loss than the latter. 4) The more the number of flashover discharge, the less insulation of each solids, but in case of bakelite, insulation almost vanishes after a couple of discharge. 5) When each insulator is covered with transformer oil, the flashover voltage generally increases and the corona loss decreases.eases.

  • PDF

A Study on the Flashover along the Spacer Surface SF6-N2 Gas Mixtures Stressed by D.C (SF6및 SF6-N2 가스 중에서 직류전동에 \ulcorner나 스페이서 연면간락에 관한 연구)

  • 김정달;정재길;이동인
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.11
    • /
    • pp.796-805
    • /
    • 1987
  • The flashover voltages have been investigated for spacer and unbridged-gap in SF6-N2 gas mixtures up to the value of 760(torr. cm), The gap was stressed by DC source The results obtained are as follows` 1) The flashover voltages for an unbridged gap and for a spacer in SF6, N2 and SF6-N2 gas mixtures follow the Paschen's curve. 2) The polarity effects was not observed in both unbridged gap and a spacer which had per ect contact with an electrode. The flashover voltages for negative polatity are lower than those for positive polarity in case of imperfect contact. 3) 3%flashover voltage is decreased by putting a spacer which had perfect contact with an electrode. The spacer which has a gap void shows the lowest flashover voltage. 4) The lowest spacer efficiency was obtained with higher gas pressure & large amount of N2 content. The flashover voltages depend on the gas pressure rather than the spacer efficienty at low value of pd. 5) The flashover voltages of gas mixtures of N2 with SF6 are relatively high, even though the amount of SF6 gas content is small.

  • PDF

Mathematical Modeling on AC Pollution Flashover Performance of Glass and Composite Insulator

  • Prakash, N.B.;Parvathavarthini, M.;Madavan, R.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1796-1803
    • /
    • 2015
  • While considering the current scenario, in this world power demand goes on increases day by day. Frequent power outages occur in high voltage transmission line due to the deprived performance of polluted insulators; this affects overall operation of power system and may indirectly impinge on the growth of production sector. Many researchers are keenly taking efforts to provide highly reliable and stable power to neediest. In this paper, A.C pollution flashover performance of disc type glass insulator and composite long rod insulators investigation under various artificial pollutions by varying Equivalent Salt Density Deposition (ESDD) levels. Here, we use different types of pollution methods like binding method, dipping method and spraying methods with different types of pollutants concentration. Based on dimensional analysis, four different Mathematical models have been developed to predict the A.C pollution Flashover Voltage (FOV) of insulators. Both the experimental and mathematically modeled results are compared; it's observed that mathematical model 3 yields better results.

Pre-Flashover of Alumina in Vacuum (진공 중에서 알루미나의 플래쉬오버)

  • Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.375-376
    • /
    • 2008
  • The flashover of insulators in vacuum is the main factor to limit the performance of insulation in vacuum insulation system. It is believed that the pre-flashover phenomena would play a very important role in the procedure of the flashover in the interface between the insulators and vacuum. This paper is mainly concerned on the pre-flashover phenomena of Alumina insulators in vacuum. There are 24 different types of alumina insulators were tested with a 0.7/4 ${\mu}s$ pulsed voltage under a $1\times10^{-4}$Pa vacuum. The observed pre-flashover phenomena were classified and the pre-flashover characteristics were concluded. It is useful to study further on the flashover mechanism in vacuum.

  • PDF

Flashover Failure of Polymer Insulator in Distribution Lines (배전용 폴리머애자의 섬락고장)

  • 한재홍;이병성;김찬영;윤태상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.767-770
    • /
    • 2000
  • This study was investigated for searching a cause of flashover failure of polymer insulator and preparing countermeasures. Hydrophobicity, microstructure and chemical structural change of polymer weathershed were studied by polymer characterization methods. In addition, the electrical properties such as power frequency dry flashover voltage/impulse voltage tests, contamination characteristics were carried out. The hydrophobicity of polymer weathershed was decreased significantly and cracks were observed on the surface. Also, the electrical characteristics did not satisfy the KEPCO specification. The failed polymer insulators showed the more leakage current than 4 years service-aged ones. From the result, it can be concluded that the flashover failure of polymer insulator was attributed to the surface aging and severe contamination.

  • PDF

Pre-Flashover of Alumina in Vacuum (진공중에서 알루미나의 플래쉬오버 현상)

  • Jung, You-Ra;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.266-267
    • /
    • 2008
  • The flashover of insulators in vacuum is the main factor to limit the performance of insulation in vacuum insulation system. It is believed that the pre-flashover phenomena would play a very important role in the procedure of the flashover in the interface between the insulators and vacuum. This paper is mainly concerned on the pre-flashover phenomena of Alumina insulators in vacuum. There are 24 different types of alumina insulators were tested with a 0.7/4 ${\mu}s$ pulsed voltage under a $1\times10^{-4}Pa$ vacuum. The observed pre-flashover phenomena were classified and the pre-flashover characteristics were concluded. It is useful to study further on the flashover mechanism in vacuum.

  • PDF

Influence of Combustion Flame on Flashover Characteristics Due to Fire Occurrence (화재발생시 직류 플래시오버특성에 미치는 연소화염의 영향)

  • 하장호;김인식;정우영
    • Fire Science and Engineering
    • /
    • v.17 no.2
    • /
    • pp.25-34
    • /
    • 2003
  • In this paper, characteristics of the DC flashover voltage in the horizontal air gap of sphere-sphere/needle-needle electrode system were investigated when the combustion flame of paraffin oil was present between the two electrodes. The reduction characteristic of DC flashover voltage was discussed with the thermal ionization process, the relative air density and the deflection phenomena in the shape of flames that caused by the corona wind and Coulomb's force. As the results of an experimental investigation, It was found that the reduction characteristics of DC flashover voltages with flames were affected strongly by the flame deflection and the change of relative air density. It was also found that the thermal ionization phenomena were not important in the range of combustion flame temperature.

Electrical Characteristic of a Suspended Porcelain Insulator with a 154 kV Transmission Line (154 kV 송전선로 자기재 현수 애자의 전기적 특성 규명에 관한 연구)

  • Jeon, Seongho;Choi, In-Hyuk;Kim, Taeyong;Lee, Youn-Jung;Koo, Ja-Bin;Son, Ju-Am;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.56-59
    • /
    • 2020
  • Porcelain insulators are typically exposed to surface discharge and lightning impulse in service. This study investigates the insulation characteristics of the external and internal discharges of a porcelain insulator with respect to its flashover for a 154 kV transmission line. The experiments are also conducted using a wet flashover test and an impulse test based on the external discharge and the internal penetration, to classify the flashover voltage-time curve of the porcelain insulator. When an impulse with a strength of 2,500 kV/㎲ was applied three times to 6.5 mm ceramic samples, electrical penetration of approximately 70% occurred. The impulse experiment confirmed that the electrical penetration inside the porcelain insulator coincided with the area where the electric field was concentrated. The wet flashover voltage test revealed that the flashover threshold voltage increases by approximately 7% after cleaning of the surface.

Characteristics of Surface flashover in LN2 (액체질소 중에서의 연면방전 특성)

  • 정종만;백승명;김상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.1
    • /
    • pp.70-76
    • /
    • 2003
  • For the development of superconducting power apparatus, it is necessary to establish the dielectric technology in coolant like L$N_2$. Therefore in this paper we conducted experiment of surface flashover that could occur in the windings of HTS transformer which will be developed in the pancake coil type. First, we distinguished two types of surface flashover by electrode alignment, such as parallel and vertical, and then compared with each characteristics of surface flashover. The flashover voltage was more affected by thickness of spacer than by surface length when the thickness of spacer is over 1 mm. And the surface flashover with metallic particle attached on the spacer was tested, it was affected by the particle position. The more close to the electrodes, the worse the characteristics. Also the experiment was conducted when the electrode was immersed in liquid nitrogen(L$N_2$) partially. The surface flashover characteristics of spacer was, when immersed partially in 50%, rapidly decreased.