• Title/Summary/Keyword: Flash memory-based DBMS

Search Result 7, Processing Time 0.018 seconds

Cost Models of Energy-based Query Optimization for Flash-aware Embedded DBMS (플래시 기반 임베디드 DBMS의 전력기반 질의 최적화를 위한 비용 모델)

  • Kim, Do-Yun;Park, Sang-Won
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.3
    • /
    • pp.75-85
    • /
    • 2008
  • The DBMS are widely used in embedded systems. The flash memory is used as a storage device of a embedded system. The optimizer of existing database system assumes that the storage device is disk. There is overhead to overwrite on flash memory unlike disk. The block of flash memory should be erased before write. Due to this reason, query optimization model based on disk does not adequate for flash-aware database. Especially embedded system should minimize the consumption of energy, but consumes more energy because of excessive erase operations. This paper proposes new energy based cost model of embedded database and shows the comparison between disk based cost model and energy based cost model.

A Non-fixed Log Area Management Technique in Block for Flash Memory DBMS (플래시메모리 DBMS를 위한 블록의 비고정적 로그 영역 관리 기법)

  • Cho, Bye-Won;Han, Yong-Koo;Lee, Young-Koo
    • Journal of KIISE:Databases
    • /
    • v.37 no.5
    • /
    • pp.238-249
    • /
    • 2010
  • Flash memory has been studied as a storage medium in order to improve the performance of the system using its high computing speed in the DBMS field where frequent data access is needed. The most difficulty using the flash memory is the performance degradation and the life span shortening of flash memory coming from inefficient in-place update. Log based approaches have been studied to solve inefficient in-place update problem in the DBMS where write operations occur in smaller size of data than page frequently. However the existing log based approaches suffer from the frequent merging operations, which are the principal cause of performance deterioration. Thus is because their fixed log area management can not guarantee a sufficient space for logs. In this paper, we propose non-fixed log area management technique that can minimize the occurrence of the merging operations by promising an enough space for logs. We also suggest the cost calculation model of the optimal log sector number minimizing the system operation cost in a block. In experiment, we show that our non-fixed log area management technique can have the improved performance compared to existing approaches.

An Efficient Logging Scheme based on Dynamic Block Allocation for Flash Memory-based DBMS (플래시 메모리 기반의 DBMS를 위한 동적 블록 할당에 기반한 효율적인 로깅 방법)

  • Ha, Ji-Hoon;Lee, Ki-Yong;Kim, Myoung-Ho
    • Journal of KIISE:Databases
    • /
    • v.36 no.5
    • /
    • pp.374-385
    • /
    • 2009
  • Flash memory becomes increasingly popular as data storage for various devices because of its versatile features such as non-volatility, light weight, low power consumption, and shock resistance. Flash memory, however, has some distinct characteristics that make today's disk-based database technology unsuitable, such as no in-place update and the asymmetric speed of read and write operations. As a result, most traditional disk-based database systems may not provide the best attainable performance on flash memory. To maximize the database performance on flash memory, some approaches have been proposed where only the changes made to the database, i.e., logs, are written to another empty place that has born erased in advance. In this paper, we propose an efficient log management scheme for flash-based database systems. Unlike the previous approaches, the proposed approach stores logs in specially allocated blocks, called log blocks. By evenly distributing logs across log blocks, the proposed approach can significantly reduce the number of write and erase operations. Our performance evaluation shows that the proposed approaches can improve the overall system performance by reducing the number of write and erase operation compared to the previous ones.

A Study of the Merging Layers of the Storage System for Flash-Based DBMS (플래시 메모리용 DBMS를 위한 스토리지 시스템의 계층 통합에 대한 연구)

  • Sim, Hyo-Gi;Yoon, Kyoung-Hon;Park, Sung-Min;Jung, Ho-Young;Cha, Jae-Hyuk;Kang, Soo-Yong
    • Journal of Digital Contents Society
    • /
    • v.8 no.4
    • /
    • pp.593-600
    • /
    • 2007
  • Small computer systems such as mobile devices adopt NAND flash memories as their storage media. However, DBMS running on such systems are optimized to hard disks. When small computer systems use DBMS they usually use additional system layer, like FTL, that emulates flash memories as normal hard disks and DBMS cannot control flash memories directly. In this paper, we propose unified storage system that DBMS controls flash memories directly. We implemented the system in a real environment and proved the proposed system outperforms legacy systems.

  • PDF

Container-Based Record Management in Flash Memory Environment (플래시 메모리 환경을 위한 컨테이너 기반 레코드 관리 방법)

  • Bae, Duck-Ho;Kim, Sang-Wook;Chang, Ji-Woong
    • Journal of KIISE:Databases
    • /
    • v.36 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Flash memory has its unique characteristics: i.e., (1) the write operation is much more costly than the read operation. (2) In-place updating is not allowed. In this paper, we first analyze how these characteristics affect the performance of record management in flash memory, and discuss the problems with previous methods for record management when they are applied to flash memory environment. Next, we propose a new record management method to be suitable for flash memory environment. The proposed method employs a new concept of a container that makes it possible to overwrite data on flash memory several times when performing insertions, deletions, and modifications of records. As a result, this method reduces the number of overwrite operations, and consequently does the number of erase operations. The results of experiments show that our method improves the performance by up to 34%, compared with the previous one.

An Efficient Flash Memory B-Tree Supporting Very Cheap Node Updates (플래시 메모리 B-트리를 위한 저비용 노드 갱신 기법)

  • Lim, Seong-Chae
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.8
    • /
    • pp.706-716
    • /
    • 2016
  • Because of efficient space utilization and fast key search times, B-trees have been widely accepted for the use of indexes in HDD-based DBMSs. However, when the B-ree is stored in flash memory, its costly operations of node updates may impair the performance of a DBMS. This is because the random updates in B-tree's leaf nodes could tremendously enlarge I/O costs for the garbage collecting actions of flash storage. To solve the problem, we make all the parents of leaf nodes the virtual nodes, which are not stored physically. Rather than, those nodes are dynamically generated and buffered by referring to their child nodes, at their access times during key searching. By performing node updates and tree reconstruction within a single flash block, our proposed B-tree can reduce the I/O costs for garbage collection and update operations in flash. Moreover, our scheme provides the better performance of key searches, compared with earlier flash-based B-trees. Through a mathematical performance model, we verify the performance advantages of the proposed flash B-tree.

A Recovery Mechanism applying the Shadow-Palling technique to Flash Memory based LFS (플래시 메모리 기반 LFS에 그림자 페이지 기법을 적용한 회복기법)

  • 황의덕;차재혁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.199-201
    • /
    • 2004
  • 모바일 장치에서 많이 사용되는 플래시 메모리는 작고, 저전력을 사용하며 내구성을 지니는 비휘발성 저장장치이다. 플래시 메모리의 읽기 속도는 램과 비슷하며, 대용량화 되어가고 있지만 쓰기 속도가 램에 비해 느리고, 블록에 대한 쓰기가 제한되어 있다. 현재의 디스크 기반의 DBMS 와는 달리 플래시 메모리용 저장장치를 설계함에 있어 트랜잭션 실패시의 회복기법이 같은 블록에 다시 쓰기가 불가능한 플래시 메모리의 특성을 고려하는 것이 중요하다. 본 연구에서 LFS에 Shadow Paging을 응용하여 플래시 메모리의 블록에 대한 쓰기 횟수를 줄이고 플래시 메모리의 특성에 맞추어 트랜잭션 실패시 효율적인 데이터 복구를 가능하게 하는 회복기법을 제안한다.

  • PDF