• Title/Summary/Keyword: Flash gas

Search Result 135, Processing Time 0.021 seconds

Measurement and Prediction of Fire and Explosion Properties of 3-Hexanone (3-헥사논의 화재 및 폭발 특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.33-38
    • /
    • 2013
  • For the safe handling of 3-hexanone(ethyl propyl ketone), this study was investigated the explosion limits of 3-hexanone in the reference data. The flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. The lower flash points of 3-hexanone by using closed-cup tester were experimented at $18^{\circ}C$. The lower flash points of 3-hexanone by using open cup tester were experimented in $27^{\circ}C{\sim}32^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 tester for 3-hexanone. The experimental AIT of 3-hexanone was at $425^{\circ}C$. The lower explosion limit( LEL) by the measured lower flash point of 3-hexanone was calculated as 1.21 Vol%.

Prediction and Measurement of Flash Point and Fire Point of Aromatic Hydrocarbons (방향족탄화수소의 인화점과 연소점 측정 및 예측)

  • Ha Dong-Myeong;Han Jong-Geun
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.3 s.28
    • /
    • pp.21-26
    • /
    • 2005
  • The flash points and the fire points are one of the most important combustible properties used to determine the potential for the fire and explosion hazards of flammable substances. In this study, the flash points of aromatic hydrocarbons, were measured by using Pensky-Martens Closed Cup apparatus(ASTM-D93) and Tag Open-Cup apparatus(ASTM D 1310-86). Also the fire points of aromatic hydrocarbons, were measured by using Tag Open-Cup apparatus. The measured flash points were in good agreement with reference values. The measured fire points compared with the estimated values based on 1.23 times stoichiometric concentration. The values calculated by the proposed equation were in agreement with measured values.

  • PDF

Prediction of Flash Point of Binary Systems by Using Multivariate Statistical Analysis (다변량 통계 분석법을 이용한 2성분계 혼합물의 인화점 예측)

  • Lee, Bom-Sock;Kim, S.Y.;Chung, C.B.;Choi, S.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.29-33
    • /
    • 2006
  • Estimation of process safety is important in the chemical process design. Prediction for flash points of flammable substances used in chemical processes is the one of the methods for estimating process safety. Flash point is the property used to examine the potential for the fire and explosion hazards of flammable substances. In this paper, multivariate statistical analysis methods(partial least squares(PLS) quadratic partial least squares(QPLS)) using experimental data is suggested for predicting flash points of flammable substances of binary systems. The prediction results are compared with the values calculated by laws of Raoult and Van Laar equation.

  • PDF

Measurement of Flash Points and Autoignition Temperatures for Xylene Isomers (크실렌 이성질체의 인화점과 최소자연발화온도의 측정)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.4
    • /
    • pp.40-45
    • /
    • 2009
  • In order to investigate the compatibility of data in MSDS(Material Safety Data Sheet), the flash point of xylene isomer was measured by using Pensky-Martens closed cup (ASTM D93), Setaflash closed cup(ASTM D3278), Tag open cup(ASTM D1310), and Cleveland open cup (ASTM D92) testers. Also, the AITs(autoignition temperatures) of xylene isomers were measured by using ASTM E659-78 tester. The measured the flash points and the AITs were compared with literatures and MSDS in KOSHA(Korea Occupational Safety and Health Agency). The measured the flash points and the AITs were different from those in literatures and MSDS. As a result, this paper is shown that it is needed to investigate combustion characteristics of xylene isomer for the fire safety objectives.

  • PDF

Measurement and Prediction of Flash Points of Acetic Acid-Formic Acid System using Cleveland Open Cup Apparatus (Cleveland 개방식 장치를 이용한 Acetic acid+Formic acid 계의 인화점 측정과 예측)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.67-72
    • /
    • 2013
  • The flash point is the lowest temperature at which there is enough concentration of flammable vapor to form an ignitable mixture with air. The flash point is a major physical property used to analyse the fire and explosion hazards of a flammable liquid solution. The flash point data for pure components are easily available in several literature. But the flash points of the flammable binary solutions appear to be scarce in the literature. The objective of this study is to measure and estimate the flash point of acetic acid-formic acid system. Cleveland open cup tester was used to measure the flash point. The experimental data were compared with the values estimated by the Raoult's law and the optimization methods based on van Laar and Wilson equations. As a result, the estmated values by optimization methods were found to be better than those based on the Raoult's law.

The Measurement of the Fire and Explosion Properties for 2-Methyl-1-butanol (2-Methyl-1-butanol의 화재 및 폭발 특성치의 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.8-14
    • /
    • 2015
  • For the safe handling of 2-methyl-1-butanol being used in various ways in the chemical industry, the flash point and the autoignition temperature(AIT) of 2-methyl-1-butanol was experimented. And, the lower explosion limit of 2-methyl-1-butanol was calculated by using the lower flash point obtained in the experiment. The flash points of 2-methyl-1-butanol by using the Setaflash and Pensky-Martens closed-cup testers measured $40^{\circ}C$ and $44^{\circ}C$, respectively. The flash points of 2-methyl-1-butanol by using the Tag and Cleveland open cup testers are measured $49^{\circ}C$ and $47^{\circ}C$. The AIT of 2-methyl-1-butanol by ASTM 659E tester was measured as $335^{\circ}C$. The lower explosion limit by the measured flash point $40^{\circ}C$ was calculated as 1.30 Vol.%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.

The Measurement and Estimation of Minimum Flash Point Behavior for Binary Mixtures Using Tag Open-Cup Tester (Tag 개방식 장치를 이용한 이성분계 혼합물의 최소인화점 현상의 측정 및 예측)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.50-55
    • /
    • 2008
  • The flash points for the systems, ethlybenzene+n-butanol and ethlybenzene+n-hexanol, were measured by using Tag open-cup tester (ASTM D1310-86). These binary mixtures exhibited MFPB (minimum flash point behavior), which leads to the minimum on the flash point vs composition curve. The experimental data were compared with the values calculated by the Raoult's law, the UNIQUAC equation and the NRTL equation. The calculated values based on the UNIQUAC and NRTL equations were found to be better than those based on the Raoult's law. It was concluded that the UNIQUAC and NRTL equations were more effective than the Raoult' law at describing the activity coefficients for nonideal solution such as the ethlybenzene+n-butanol and ethlybenzene+n-hexanol systems. And the predictive curve of the flash point prediction model based on the NRTL equation described the experimentally-derived data more effectively than was the case when the prediction model was based upon the UNIQUAC equation.

  • PDF

A Study on the Consequences of Underground High Pressure Natural Gas Pipelines (고압 매몰 천연가스 배관 누출사고 피해해석에 관한 연구)

  • Lee, Seungkuk;Shin, Hun Yong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.2
    • /
    • pp.44-49
    • /
    • 2013
  • Due to rapid rise of consuming rate for natural gas, installation and operation of high pressure natural gas pipeline is inevitable for high rate of gas transportation. Accordingly incidents on the underground high pressure natural gas pipeline come from various reasons will lead to massive release of natural gas and gas dispersion in the air. Further, fire and explosion from ignition of released gas may cause large damage. This study is for release rate, dispersion and flash fire of natural gas to establish a safety management system, setting emergency plan and safety distance.

Characteristics of boil-off-gas partial re-liquefaction systems in LNG ships (LNG선박용 BOG 부분재액화 시스템 특성 연구)

  • Yun, Sang-Kook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.174-179
    • /
    • 2016
  • To protect the ocean environment, the use of liquefied natural gas (LNG) carriers, bunkering ships, and fueled ships is increasing. Recently, Korean shipbuilders have developed and supplied a partial reliquefaction facility for boil-off-gas (BOG). Despite reasonable insulation, heat leakage in vessel storage tanks causes LNG to be continuously evaporated as BOG. This research analyzed the maximum liquid yield rate for various partial reliquefaction systems (PRS) and considered related factors affecting yields. The results showed a liquid yield of 48.7% from an indirect PRS system (heat exchanges between cold flash gas and compressed natural gas), and 41% from a direct PRS system (BOG is mixed with flash gas and discharged from a liquid-vapor separator). The primary factor affecting liquid yield was heat exchanger effectiveness; the exchanger's efficiency and insulation characteristics directly affect the performance of BOG reliquefaction systems.

Measurement and Prediction of the Combustible Properties of Propionic Anhydride (Propionic Anhydride의 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.3
    • /
    • pp.66-72
    • /
    • 2016
  • For the safe handling of Propionic Anhydride being used in various ways in the chemical industry, the flash point and the autoignition temperature(AIT) of Propionic Anhydride was experimented. And, the lower explosion limit of propionic anhydride was calculated by using the lower flash point obtained in the experiment. The flash points of propionic anhydride by using the Setaflash and Pensky-Martens closed-cup testers measured $60^{\circ}C$ and $61^{\circ}C$, respectively. The flash points of propionic anhydride by using the Tag and Cleveland open cup testers are measured $67^{\circ}C$ and $73^{\circ}C$. The AIT of propionic anhydride by ASTM 659E tester was measured as $280^{\circ}C$. The lower explosion limit by the measured flash point $60^{\circ}C$ was calculated as 1.37 Vol.%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.