• Title/Summary/Keyword: Flash Point

Search Result 306, Processing Time 0.031 seconds

A Study on The Possibility of Flash Fire of Combat System by Kinetic Energy Ammunitions (운동에너지탄에 의한 전투시스템의 순간화재 발생가능성에 대한 연구)

  • Park, Young Ju;Lee, Eun Min;Lee, Hae Pyeong;Hwang, Me Jung;Lee, Chang Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.2
    • /
    • pp.89-97
    • /
    • 2014
  • This study analyzed various possibilities of flash fire which could occur in a variety of combats, in order to predict that of flash fire of combat system armor using Autodyn program. The possibility was judged by the temperature distribution of fuels, which was caused by the impact of parts of fuel systems through an armor, in the event of getting shot by external ammunition. Diverse variables could affect the possibility of flash fire: external ammunition(Type A: penetration 570 mm, Type B: penetration 410 mm), fuels(Gasoline, Diesel, Kerosene), the thickness of an armor(100, 200, 300, 400, 500 mm), the gap of a fuel tank and an armor(45, 95, 145, 195, 245, 295 mm). As a result, when an armor was 20 mm think, the temperature of 3 fuels ranged like this: Gasoline 372~387 K, Diesel 442~408 K, Kerosene 384~395 K. Although they made a little difference among them, they all didn't reach their ignition points. When an armor was 200 mm think, each fuel reached the maximum temperature, not reaching its ignition points as well. The thicker an armor was, the lower the temperature got. When Type B ammunition was used, the temperature of fuels went up 19~59 K higher than Type A was used. In the case that the gap of fuel tank and an armor was 20 mm thick, the temperature distribution of Gasoline showed 389~450 K, the maximum temperature appeared in the gap of 145 mm, and the minimum temperature 295 mm. For Type B, the temperature distribution of fuels ranged 386~401 K, the maximum temperature appeared in the gap of 245 mm, and the minimum temperature 45 mm. There was no significant difference between two cases, and neither of them reached its ignition point. Accordingly, as the tested fuels of combat systems didn't reach their ignition points, it is thought that the possibility of flash point of an armor is low.

Study on the Spray Control of Mixed Fuel Using Flash Boiling (감압비등을 이용한 혼합연료의 분무제어에 관한 연구)

  • Myong, Kwang-Jae;Yoon, Jun-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.1005-1013
    • /
    • 2010
  • This study was conducted to assess the spray control of flash boiling with mixed fuel in consideration of HCCI (Homogeneous Charge Compression Ignition) engine condition. Mixed fuel existing in two phase regions can control the process of mixture formation under low temperature and density by using the spray resulting from flash boiling which is able to induce rapid evaporation of fuel spray as well as the evaporation of high boiling point component. Because HCCI engine injects the fuel early under ambient conditions, it can facilitate the chemical control of ignition combustion and physical control such as breakup and atomization of liquid fuel by flash boiling of mixed fuel which consists of highly ignitable light oil and highly volatile gasoline. This study was conducted by performing video processing after selected composition and molar fraction of the mixed fuel as major parameters and photographed Schlieren image and Mie scattered light corresponding to the flash boiling phenomenon of the fuel spray that was injected inside a constant volume vessel. It was found that flash boiling causes significant changes in the spray structure under relatively low temperature and density. Thus, we analyzed that the flash boiling spray can be used for HCCI combustion by controlling the mixture formation at the early fuel injection timing.

Enhance Potential Stability of Organic Electrolyte in EDLC by Using Co-solvent and Its electrochemical properties. (전기 이중층 커패시터 적용을 목적으로 한 공용매상 전해액과 전기화학적 특성)

  • Lee, Hyeon-Seok;Yuk, Yeong-Jae;Kim, Han-Ju;Park, Su-Gil
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.164-164
    • /
    • 2014
  • Characteristics of electrolyte are those; electrical stability, ion conductivity, viscosity, high temperature work, cell application. Theoretically, GBL has high oxidation voltage. Also, boiling point of GBL is $206^{\circ}C$ and flash point is over $280^{\circ}C$.

  • PDF

Macromedia Breeze로 날개를 달자

  • Seo, Hong-Seok
    • the USERS
    • /
    • s.44
    • /
    • pp.58-61
    • /
    • 2005
  • 리치 웹 커뮤니케이션, 공동 작업 및 교육을 위한 차세대 시스템인 Macromedia Breeze, 온라인 회의, 프레젠테이션 및 교육 과장을 통해 중요한 정보를 신속하고 간단하게 공유하는 것은 물론 기술 수준에 관계없이 누구든지 익숙한 PowerPoint 어플리케이션을 사용하고 인터넷을 통해 Macromedia Flash 형식의 정보를 공유함으로써 단 몊 시간 내에 프리젠테이션 환경을 구축할 수 있다.

  • PDF

Measurement and Investigation of Combustible Properties of n-Heptane for Risk Assessment of Gasoline Tank (가솔린탱크의 위험성평가를 위한 노말헵탄의 연소특성치 측정 및 고찰)

  • Ha, Dong-Myeong;Jeong, Kee-Sin;Lee, Sung-Jin;Cho, Yong-Sun;Yoon, Myung-O
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.76-81
    • /
    • 2010
  • For the safe handling of n-heptane, the explosion limit at $25^{\circ}C$, the temperature dependence of the explosion limits and the lower flash point were investigated. And AITs (auto-ignition temperatures) by ignition time delay for n-heptane were experimented. By using the literatures data, the lower and upper explosion limits of n-heptane recommended 1.0 Vol% and 7.0 Vol%, respectively. And the lower flash points of n-heptane recommended $-4^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for n-heptane and the experimental AIT of n-hexane was $225^{\circ}C$. The new equation for predicting the temperature dependence of the explosion limits of n-heptane is proposed. The values calculated by the proposed equations were a good agreement with the literature data.

Analysis on the special quantitative variation of dot model by the position transform

  • Kim, Jeong-lae;Kim, Kyung-seop
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.67-72
    • /
    • 2017
  • Transform variation technique is constituted the vibration status of the flash-gap recognition level (FGRL) on the distribution recognition function. The recognition level condition by the distribution recognition function system is associated with the scattering vibration system. As to search a position of the dot model, we are consisted of the distribution value with character point by the output signal. The concept of recognition level is composed the reference of flash-gap level for variation signal by the distribution vibration function. For displaying a variation of the FGRL of the maximum-average in terms of the vibration function, and distribution position vibration that was the a distribution value of the far variation of the $Dis-rf-FA-{\alpha}_{MAX-AVG}$ with $5.74{\pm}1.12$ units, that was the a distribution value of the convenient variation of the $Dis-rf-CO-{\alpha}_{MAX-AVG}$ with $1.64{\pm}0.16$ units, that was the a distribution value of the flank variation of the $Dis-rf-FL-{\alpha}_{MAX-AVG}$ with $0.74{\pm}0.24$ units, that was the a distribution value of the vicinage variation of the $Dis-rf-VI-{\alpha}_{MAX-AVG}$ with $0.12{\pm}0.01$ units. The scattering vibration will be to evaluate at the ability of the vibration function with character point by the distribution recognition level on the FGRL that is showed the flash-gap function by the recognition level system. Scattering recognition system will be possible to control of a function by the special signal and to use a distribution data of scattering vibration level.

Method for Locating Arc-events by Utilizing Transmission Loss of Plastic Optical Fiber (플라스틱 광섬유의 손실 특성을 활용한 아크플래시 위치추적 방법)

  • Jeong, Hoonil;Kim, Young Ho;Kim, Youngwoong;Rho, Byung Sup;Kim, Myoung Jin
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.280-284
    • /
    • 2016
  • For an arc-flash protection system, the selection of arc-flash sensor in implementation is largely dependent on the coverage area and the spatial resolution. Typically, a point sensor is used to accurately measure an arc event within a very narrow region; whereas, a loop or a line sensor can cover several electrical compartment at the same time, but with a poor resolution. In this work, a novel scheme for an arc-flash sensor was developed by making use of the transmission loss of plastic optical fibers (POFs) to cover a broad range with a high spatial resolution. By relating the amplitude ratio of the arc-signals at the ends of the POF with the arc-location, arc events could be located with a resolution of ~5 cm within a spatial range of 10 m, which has not been reported yet.