• Title/Summary/Keyword: Flash Fire

Search Result 198, Processing Time 0.024 seconds

A Study on the Perception of Fire Risk and Flash Flame Concerning the Firefighter (화재진압대원의 화재현장 위험도 및 돌발화염 인식 조사에 관한 연구)

  • Choi, Jae-hyeong
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.4
    • /
    • pp.529-536
    • /
    • 2017
  • In this study, the perceptions were surveyed fire risk and flash flames concerning the firefighters. The results were statistically evaluated according to age, experience and rank. More than 70% of the respondents answered that there is a possibility of unexpected flame exposure in the field of fire, but there was no recognition difference according to age, experience and rank. However, if there is an emergency situation in the field of fire, the survey on the ability to cope with crises showed that there is a difference in perception depending on the age, career, and rank of respondents. From these results, it is expected that strengthening simulation training of unexpected situation will be more urgently required in the future, and measures should be taken to minimize human accidents through improvement of standard operation procedures or supplement of fire suppression education according to unexpected situation.

A Study of the Evaluation of Combustion Properties of Tetralin (테트랄린의 연소특성치 평가에 관한 연구)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.8-14
    • /
    • 2018
  • In the industrial chemical process involving combustible materials, reliable safety data are required for design prevention, protection and mitigation measures. The accurate combustion properties are necessary to safely treatment, transportation and handling of flammable substances. The combustion parameters necessary for process safety are lower flash point, upper flash point, fire point, lower explosion limit(LEL), upper explosion limit(UEL)and autoignition temperature(AIT) etc.. However, the combustion properties suggested in the Material Safety Data Sheet (MSDS) are presented differently according to the literatures. In the chemical industries, tetralin which is widely used as a raw material of intermediate products, coating substances and rubber chemicals was selected. For safe handling of tetralin, the lower and flash point, the fire point, and the AIT were measured. The LEL and UEL of tetralin were calculated using the lower and upper flash point obtained in the experiment. The flash points of tetralin by using the Setaflash and Pensky-Martens closed-cup testers measured $70^{\circ}C$ and $76^{\circ}C$, respectively. The flash points of tetralin using the Tag and Cleveland open cup testers are measured $78^{\circ}C$ and $81^{\circ}C$, respectively. The AIT of the measured tetralin by the ASTM E659 apparatus was measured at $380^{\circ}C$. The LEL and UEL of tetralin measured by Setaflash closed-cup tester at $70^{\circ}C$ and $109^{\circ}C$ were calculated to be 1.02 vol% and 5.03 vol%, respectively. In this study, it was possible to predict the LEL and the UEL by using the lower and upper flash point of tetralin measured by Setasflash closed-cup tester. A new prediction method for the ignition delay time by the ignition temperature has been developed. It is possible to predict the ignition delay time at different ignition temperatures by the proposed model.

Measurement of Flash Points for n-hexanol+n-butyric acid and n-butanol+propionic acid by Seta-flash Closed Cup Method (Seta-flash 밀폐식 방법에 의한 n-hexanol+n-butyric acid 계와 n-butanol+propionic acid 계의 인화점 측정)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.76-80
    • /
    • 2014
  • The flash point is one of the most important physical properties used to determine the fire hazard of flammable liquid mixture and defined as the lowest temperature at which a liquid produces sufficient vapor to form a combustible mixture with air. The main purpose of this paper is to measure and predict the flash point of binary flammable miscible mixtures. The flash points for n-hexanol+n-butyric acid and n-butanol+propionic acid, were measured by using Seta-flash closed cup method. The experimentally derived data were correlated with the binary interaction parameters of the van Laar and NRTL equations through the optimization method. The flash points estimated by these correlations were compared with those calculated by the method based on Raoult's law. The optimization method were found to be better than the method based on the Raoult's law.

The Investigation of Compatibility of Combustible Characteristics for n-Tridecane (노말트리데칸의 연소특성치의 적정성 고찰)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.83-88
    • /
    • 2012
  • For the safe handling of n-tridecane, the lower flash points and AITs(auto-ignition temperatures) by ignition delay time were experimented. Also lower explosion limits by the lower flash points were calculated. The lower flash points of n-tridecane by using closed-cup tester were experimented $92^{\circ}C$ and $96^{\circ}C$. The lower flash points and fire point of n-tridecane by using open cup tester were experimented 100 oC and 103 oC, respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-tridecane. The experimental AIT of n-tridecane was 223 oC. The calculated lower explosion limit by using measured lower flash point 92 oC for n-tridecane was 0.6 Vol.%.

Measurement of Flash Points of Epoxy Resin Solutions by Using Additives (첨가제 사용에 의한 Epoxy Resin 용액의 인화점 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.3 s.81
    • /
    • pp.22-27
    • /
    • 2007
  • The knowledge of the flash point of the various liquid substances is required because of process safety and control in industrial fire protection. The epoxy resin is one of versatile resins that has wide selection of using curing agents and additives to achieve various applications such as coatings, adhesives, interior materials, reinforced plastics and electrical insulation. In this study, the lower flash points for p-xylene+epoxy resin, o-xylene+epoxy resin and n-butanol+epoxy resin systems were measured by using Pensky-Martens closed cup tester. The lower flash points for p-xylene+epoxy resin, o-xylene+epoxy resin and n-butanol+epoxy resin systems rapidly increased 80wt%, 90wt% and 95wt% of epoxy resin concentration, respectively. This results serve as a guide to estimate flash point of any epoxy resin solution.

Analysis of Parameters Affecting the Consequence of the Flash Fire Accident by the Release of Heavy Gas (무거운 가스의 누출에 의한 플래쉬화재사고에서 사고결과에 미치는 매개변수의 영향 분석)

  • Kim, Tae-Ok;Lee, Hern-Chang;Ham, Byeong-Ho;Cho, Ji-Hoon;Shin, Dong-Il;Jang, Seo-Il
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.6
    • /
    • pp.29-39
    • /
    • 2006
  • The effect of parameters on the consequence of the flash fire accident by the release of heavy gas(in this study, xylene vapor) was analyzed. Simulation results showed that the distance with the lower flammable limit($X_{LFL}$) was increased with the increase of the release hole diameter. For the case of the elevated release, $X_{LFL}$ was increased with the increase of the wind speed and the release height, but $X_{LFL}$ was not affected by the wind speed for the release on the ground level. Therefore, the accident in the elevated release was more dangerous than the release on the ground level. In this condition, the release height had more effect on $X_{LFL}$ at the night time than the daytime and in the urban area than the rural area.

The Measurement and Investigation of Fire and Explosion Characteristics of Cyclohexanone (사이클로헥사논의 화재 및 폭발 특성치의 측정 및 고찰)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.28-34
    • /
    • 2011
  • For the safe handling of cyclohexanone, the explosion limits at $25^{\circ}C$ were investigated. The lower flash points and AITs (auto-ignition temperatures) by ignition time delay for cyclohexanone were experimented. By using the literatures data, the lower and upper explosion limits of cyclohexanone recommended 1.1 Vol.% ($100^{\circ}C$) and 9.4 Vol.%, respectively. The lower flash points of cyclohexanone were experimented $42{\sim}43^{\circ}C$ by using closed-cup tester and $49{\sim}51^{\circ}C$ by using open cup tester. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for cyclohexanone and the experimental AIT of cyclohexanone was $415^{\circ}C$.

A Study on the Flash Over Delay Method for a Previously Constructed Building with Sandwich Panel Structure (샌드위치패널구조 기축건축물의 플래시오버 지연 공법 연구)

  • Kim, Do-Hyun;Cho, Nam-wook
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.71-80
    • /
    • 2017
  • The purpose of this study is to applied reinforcement method at the joint part of the sandwich panel. Becasue the joint part of the sandwich panel has a disadvantage that flame spreads fast inside steel plates in the event of fire, leading to a big fire rapidly. In this study, the combustion performance was measured through KS F ISO 13784-1 "Reaction-to-fire tests for sandwich panel building systems" according to the application of reinforcement method to prevent flame from being brought into the internal joint of the sandwich panel. For the reinforcement inside the panel, the tape produced using expanded graphite-based heat-expandable glass fiber was attached. As a result, it was confirmed that the prevention of flame from being brought into the internal joint could delay the flash over time and the collapse of the test specimen.

A Study on the Flammability and Combustion Risk of Biodiesel Mixture (바이오디젤 혼합물의 인화 및 연소 위험성에 관한 연구)

  • Kim, Ju Suk;Ko, Jae Sun
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.10-24
    • /
    • 2021
  • Purpose: The purpose of this study is to determine the dangers of biodiesel and general diesel mixtures currently used as alternative fuels by equipment (tag method and penski Marten method) and to determine the difference between flash point and combustion point (closed, open) according to test methods. It is intended to be used as a reference material for identification and evaluation of firecausing substances by confirming the risk of mixtures by comparative analysis and measurement, and establishing a risk assessment method for chemical substances. Method: Flash point test method and result treatment were tested based on ASTM and KS M mode, which are tag sealing and pen schematense test methods used as flash point and combustion point test methods for crude oil and petroleum products. The manufacturer of the equipment used in this experiment was a test equipment that satisfies the test standards of KS M 2010 with equipment produced by TANAKA of Japan. The flash point and combustion point were measured, and the flash point according to the test method of biodiesel and general diesel mixture ( Closed, open), and the ignition point of a mixture of biodiesel and general diesel was compared and analyzed for ignition risk compared with conventional diesel. Results: Looking at the experimental results, first, as an analysis of the risk of flammability of the mixture, the flash point of a substance containing 70% biodiesel was found to be about 92℃ based on general diesel with a flash point of 64.5℃, and gasoline and biodiesel or When the biodiesel mixture was synthesized, it was confirmed that the flash point tends to decrease. In addition, the difference between the flash point and the combustion point was analyzed as about 20 ~ 30℃, and when a small amount of gasoline or methanol was mixed, the flash point was lowered, but it was confirmed that the combustion point was similar to that of the existing mixture. Conclusion: In this study, in order to secure the effectiveness of the details of the criteria for judging dangerous materials in the existing Dangerous Materials Safety Management Act, and to secure the reliability and reproducibility of the judgment of dangerous materials, we confirm the criteria for judging the risk of the mixture through an experimental study on flammable mixtures. It will be able to provide reference data for experimental criteria for flammable liquids that are regulated in the field. In addition, if this study accumulates know-how on experiment by test method, it is expected that it can be used as a basis for research on risk assessment and research on dangerous goods.

Risk Assessment by Means of Measurement of Combustible Characteristics for n-Nonanol (노말노난올의 연소특성치 측정에 의한 위험성 평가)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.84-89
    • /
    • 2012
  • For the safe handling of n-nonanol, this study was investigated the explosion limits of n-nonanol in the reference data. The flash points and AITs (autoignition temperatures) by ignition delay time were experimented. As a results, the lower and upper explosion limits of n-nonanol recommended 0.8 Vol.% and 6.1 Vol.%, respectively. The lower flash points of n-nonanol by using closed-cup tester were experimented $94{\sim}97^{\circ}C$. The lower flash points of n-nonanol by using open cup tester were experimented $103{\sim}104^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for n-nonanol. The experimental AIT of n-nonanol was $270^{\circ}C$.