• Title/Summary/Keyword: Flanking sequence

Search Result 136, Processing Time 0.02 seconds

Characterization of a New ${\beta}$-Lactamase Gene from Isolates of Vibrio spp. in Korea

  • Jun, Lyu-Jin;Kim, Jae-Hoon;Jin, Ji-Woong;Jeong, Hyun-Do
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.555-562
    • /
    • 2012
  • PCR was performed to analyze the ${\beta}$-lactamase genes carried by ampicillin-resistant Vibrio spp. strains isolated from marine environments in Korea between 2006 and 2009. All 36 strains tested showed negative results in PCR with the primers designed from the nucleotide sequences of various known ${\beta}$-lactamase genes. This prompted us to screen new ${\beta}$-lactamase genes. A novel ${\beta}$-lactamase gene was cloned from Vibrio alginolyticus KV3 isolated from the aquaculture water of Geoje Island of Korea. The determined nucleotide sequence (VAK-3 ${\beta}$-lactamase) revealed an open reading frame (ORF) of 852 bp, encoding a protein of 283 amino acids (aa), which displayed low homology to any other ${\beta}$-lactamase genes reported in public databases. The deduced 283 aa sequence of VAK-3, consisting of a 19 aa signal peptide and a 264 aa mature protein, contained highly conserved peptide segments specific to class A ${\beta}$-lactamases including the specific amino acid residues STFK (62-65), SDN (122-124), E (158), and RTG (226-228). Results from PCR performed with primers specific to the VAK-3 ${\beta}$-lactamase gene identified 3 of the 36 isolated strains as V. alginolyticus, Vibrio cholerae, and Photobacterium damselae subsp. damselae, indicating the utilization of various ${\beta}$-lactamase genes including unidentified ones in ampicillin-resistant Vibrio spp. strains from the marine environment. In a mating experiment, none of the isolates transfered the VAK-3 ${\beta}$-lactamase gene to the Escherichia coli recipient. This lack of mobility, and the presence of a chromosomal acyl-CoA flanking sequence upstream of the VAK-3 ${\beta}$-lactamase gene, led to the assumption that the location of this new ${\beta}$-lactamase gene was in the chromosome, rather than the mobile plasmid. Antibiotic susceptibility of VAK-3 ${\beta}$-lactamase was indicated by elevated levels of resistance to penicillins, but not to cephalosporins in the wild type and E. coli harboring recombinant plasmid pKV-3, compared with those of the host strain alone. Phylogenetic analysis showed that VAK-3 ${\beta}$-lactamase is a new and separate member of class A ${\beta}$-lactamases.

Zygotic Expression of c-myc Gene in Mouse Early Embryos: Functional Role of c-myc Promoter (생쥐 초기배아에서 c-myc Proto-Oncogene Promoter의 기능적 활성화)

  • Park, Ki-Soo;Kang, Hae-Mook;Shim, Chan-seob;Sun, Woong;Kim, Jae-man;Lee, Young-Ki;Kim, Kyung-jin
    • The Korean Journal of Zoology
    • /
    • v.38 no.4
    • /
    • pp.550-556
    • /
    • 1995
  • The c-myc proto-oncogene is Involved In the control of normal cell proliferation and differentiation of many cell lineages. Although it has heen suggested that c-myc may play an important role in the mammalian early development, it Is unclear whether the embryonic c-myc mRNA is originated from zygotic gene expression or stored maternal message. Thus, we have construded expression vectors, In which the 5, flanking sequences including c-myc promoter region and a large non-coding exon I are fused 'sith E. coli lacZ gene that encedes $\beta$-galactosldase as a reporter. As c-myc exon I contains a modulatory sequence, we designed t, vo types of vectors (pcmyc.Gall and pcmyc-Ga12) to examine the role of exon I in c-myc expression. The former contains the complete exon I and the later has a deletion in 40 bp of modulator sequence located In the exon I of c-myc These vectors were microInjected into fertilized one-cell embryos and $\beta$-galactosidase activity was examined by X-gal staining during early embryogenesis. $\beta$-galactosidase activity derived from c-myc promoter was decreased at two-cell stage. The expression level directed by pcmyc- Ga12 was similar to that of pcmyc-Gal1, indicating that the medulatory sequence in exon I may not be Involved at least In the regulation of embryonic c-myc expression. In summary, the present study indicates that the c-myc promoter is functional at the early stage embryo, and the regulation of c-myc expression is under the control of "zygotic" clock of preimplantation mouse embryos.e embryos.

  • PDF

Loss of Specific Sequences in a Natural Variant of Potato Proteinase Inhibitor II Gene Results in a Loss of Wound-Inducible Gene Expression (감자의 단백질 분해효소 억제제 II 유전자의 특별한 염기서열의 자연적 제거로 인한 상처 유발성 발현의 소실)

  • Thornburg, Robert W.;Park, Sang-Gyu
    • Applied Biological Chemistry
    • /
    • v.39 no.2
    • /
    • pp.104-111
    • /
    • 1996
  • We have isolated several proteinase inhibitor II genes pin2 from a Russet Burbank potato DNA library. One of these, pin2T was subcloned and a 1.8 kb Xbal/Nsil insert was sequenced. This fragment contained the complete Inhibitor II gene including 965 Up of flanking DNA upstream from the gene and 200 bp of flanking DNA downstream from the gene. The open reading frame encodes a protein that is similar to other reported proteinase Inhibitor II proteins. The DNA sequence of the 5' flanking region of pin2T from -714 to +1 is highly homologous (91% identity) with that of the previously isolated wound-inducible pin2K. There are, however, four small deletions in the pin2T promoter which are located at -221 to -200, -263 to -254, -523 to -426 and -759 to -708 relative to the transcription start site of the wound-inducible pin2K. Three of these deletions map to a portion of the promoter that controls the wound-inducibility of the proteinase inhibitor genes. Chimeric genes containing the promoter of the pin2T gene linked with the both CAT and GUS were constructed and transfered into tobacco plants. Analysis of these plants indicated that pin2T is not a wound-inducible gene but is expressed at low levels. Thus, wound-inducibility is lost with the concomitant natural deletion of three small regions of the promoter. Comparision of the sequences deleted in pin2T relative to the pin2K with Genebank sequences indicates that the deleted sequences contain a motif (consensus 5'-AGTAAA-3') that is found in many other wound-inducible genes but not easily found in the published promoter sequences of other plant genes. Nuclear proteins from unwounded and wounded potato leaves were bound to the proximal promoter region, downstream of the 5'-AGTAAA-3', of pin2T. The comparison of the pin2T gone with the pin2K gene indicates that the natural internal promoter deletions are likely responsible for loss of the wound-inducible phenotype in the pin2T gene.

  • PDF

Molecular Characterization of a Transient Expression Gene Encoding for 1-Aminocyclopropane-1-carboxylate Synthase in Cotton (Gossypium hirsutum L.)

  • Wang, Xia;Zhang, Ying;Zhang, Jiedao;Cheng, Cheng;Guo, Xingqi
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.791-800
    • /
    • 2007
  • Ethylene performs an important function in plant growth and development. 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS), the key enzyme involved in ethylene biosynthesis, has been the focus of most ethylene studies. Here, a cotton ACS gene referred to as Gossypium hirsutum ACS1 (GhACS1), was isolated. The full-length cDNA of GhACS1 encodes for a 476-amino acid protein which harbors seven conserved regions, 11 invariant amino acid residues, and the PLP binding active site, all of which characterize ACC synthases. Alignment analysis showed that GhACS1 shared a high degree of identity with other known ACC synthases from different species. Two introns were detected in the genomic DNA sequence, and the results of Southern blot analysis suggested that there might be a multi-gene family encoding for ACC synthase in cotton. From the phylogenetic tree constructed with 24 different kinds of ACC synthases, we determined that GhACS1 falls into group II, and was closely associated with the wound-inducible ACS of citrus. The analysis of the 5' flanking region of GhACS1 revealed a group of putative cis-acting elements. The results of expression analysis showed that GhACS1 displayed its transient expression nature after wounding, abscisic acid (ABA), and $CuCl_2$ treatments. These results indicate that GhACS1, which was transiently expressed in response to certain stimuli, may be involved in the production of ethylene for the transmission of stress signals.

Efficient Target Site Selection for an RNA-cleaving DNAzyme through Combinatorial Library Screening

  • Kim, Ki-Sun;Choi, Woo-Hyung;Gong, Soo-Jeong;Oh, Sang-taek;Kim, Jae-Hyun;Kim, Dong-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.657-662
    • /
    • 2006
  • Identification of accessible sites in targeted RNAs is a major limitation to the effectiveness of antisense oligonucleotides. A class of antisense oligodeoxynucleotides, known as the “10-23” DNA enzyme or DNAzyme, which is a small catalytic DNA, has been shown to efficiently cleave target RNA at purine-pyrimidine junctions in vitro. We have designed a strategy to identify accessible cleavage sites in the target RNA, which is hepatitis C virus nonstructural gene 3 (HCV NS3) RNA that encodes viral helicase and protease, from a pool of random DNAzyme library. A pool of DNAzymes of 58 nucleotides-length that possess randomized annealing arms, catalytic core sequence, and fixed 5'/3'-end flanking sequences was designed and screened for their ability to cleave the target RNA. The screening procedure, which includes binding of DNAzyme pool to the target RNA under inactive condition, selection and amplification of active DNAzymes, incubation of the selected DNAzymes with the target RNA, and target site identification on sequencing gels, identified 16 potential cleavage sites in the target RNA. Corresponding DNAzymes were constructed for the selected target sites and were tested for RNA-cleavage in terms of kinetics and accessibility. These selected DNAzymes were effective in cleaving the target RNA in the presence of $Mg^{2+}$. This strategy can be applicable to identify accessible sites in any target RNA for antisense oligonucleotides-based gene inactivation methods.

Isolation and Characterization of the Colletotrichum acutatum ABC Transporter CaABC1

  • Kim, Suyoung;Park, Sook-Young;Kim, Hyejeong;Kim, Dongyoung;Lee, Seon-Woo;Kim, Heung Tae;Lee, Jong-Hwan;Choi, Woobong
    • The Plant Pathology Journal
    • /
    • v.30 no.4
    • /
    • pp.375-383
    • /
    • 2014
  • Fungi tolerate exposure to various abiotic stresses, including cytotoxic compounds and fungicides, via their ATP-driven efflux pumps belonging to ATP-binding cassette (ABC) transporters. To clarify the molecular basis of interaction between the fungus and various abiotic stresses including fungicides, we constructed a cDNA library from germinated conidia of Colletotrichum acutatum, a major anthracnose pathogen of pepper (Capsicum annum L.). Over 1,000 cDNA clones were sequenced, of which single clone exhibited significant nucleotide sequence homology to ABC transporter genes. We isolated three fosmid clones containing the C. acutatum ABC1 (CaABC1) gene in full-length from genomic DNA library screening. The CaABC1 gene consists of 4,059 bp transcript, predicting a 1,353-aa protein. The gene contains the typical ABC signature and Walker A and B motifs. The 5'-flanking region contains a CAAT motif, a TATA box, and a Kozak region. Phylogenetic and structural analysis suggested that the CaABC1 is a typical ABC transporter gene highly conserved in various fungal species, as well as in Chromista, Metazoans, and Viridiplantae. We also found that CaABC1 was up-regulated during conidiation and a minimal medium condition. Moreover, CaABC1 was induced in iprobenfos, kresoxim-methyl, thiophanate-methyl, and hygromycin B. These results demonstrate that CaABC1 is necessary for conidiation, abiotic stress, and various fungicide resistances. These results will provide the basis for further study on the function of ABC transporter genes in C. acutatum.

Cloning of Mouse AQP-CD Gene

  • Jung, Jin-Sup;Kim, Joo-In;Oh, Sae-Ok;Park, Mi-Young;Bae, Hae-Rhan;Lee, Sang-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.2
    • /
    • pp.195-200
    • /
    • 1997
  • Water transport in highly-permeable membranes is facilitated by some specialized pathways, which are called aquaporins (AQP). AQP1 (AQP-CHIP) is the first recognized aquaporin identified from red cells and renal proximal tubules. Up until now 4 other aquaporin homologs have been reported. Each aquaporin has its unique tissue distribution and regulatory mechanims. To elucidate molecular mechanisms for their transcription regulation and tissue-specific expression isolation of aquaporin genes is required. To clone promoters of the AQP family mouse genomic library was screened by the 1st exon-specific probe of AQP4, and 5 different plaques were positively hybridized. Phage DNAs were purified and characterized by restriction mapping and sequencing. One of them is the mouse AQP-CD gene. The gene was consisted of 4 exons and the exon-intron boundaries of mouse AQP-CD gene were identified at identical positions in other related genes. The 5'-flanking region of AQP-CD gene contains one classic TATA box, a GATA consensus sequence, an E-box and a cyclic AMP-responsive element. The cloning of the mouse AQP-CD gene, of which product is expressed in the collecting duct and is responsible for antidiuresis by vasopressin, will contribute to understand the molecular mechanisms of tissue-specific expression and regulation of AQP-CD gene under various conditions.

  • PDF

Mutation Analysis of the Dimer Forming Domain of the Caspase 8 Gene in Oral Submucous Fibrosis and Squamous Cell Carcinomas

  • Menon, Uthara;Poongodi, V;Raghuram, Pitty Hari;Ashokan, Kannan;Govindarajan, Giri Valanthan Veda;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.11
    • /
    • pp.4589-4592
    • /
    • 2015
  • Background: Missense and frame-shift mutations within the dimer forming domain of the caspase 8 gene have been identified in several cancers. However, the genetic status of this region in precancerous lesions, like oral submucous fibrosis (OSMF), and well differentiated oral squamous cell carcinomas (OSCCs) in patients from southern region of India is not known, and hence the present study was designed to address this issue. Materials and Methods: Genomic DNA isolated from biopsy tissues of thirty one oral submucous fibrosis and twenty five OSCC samples were subjected to PCR amplification with intronic primers flanking exon 7 of the caspase 8 gene. The PCR amplicons were subsequently subjected to direct sequencing to elucidate the status of mutation. Results: Sequence analysis identified a frame-shift and a novel missense mutation in two out of twenty five OSCC samples. The frame-shift mutation was due to a two base pair deletion (c.1225_1226delTG), while the missense mutation was due to substitution of wild type cysteine residue with phenylalanine at codon 426 (C426F). The missense mutation, however, was found to be heterozygous as the wild type C426C codon was also present. None of the OSMF samples carried mutations. Conclusions: The identification of mutations in OSCC lesions but not OSMF suggests that dimer forming domain mutations in caspase 8 may be limited to malignant lesions. The absence of mutations in OSMF also suggests that the samples analyzed in the present study may not have acquired transforming potential. To the best of our knowledge this is the first study to have explored and identified frame-shift and novel missense mutations in OSCC tissue samples.

Construction of Transformation Method for Streptomyces scabiei ATCC 49173 Producing Phytotoxin (식물독소를 생산하는 Streptomyces scabiei ATCC 49173의 형질전환법 구축)

  • Jang, Bo-Youn;Ha, Heon-Su;Choi, Sun-Uk
    • KSBB Journal
    • /
    • v.25 no.2
    • /
    • pp.167-172
    • /
    • 2010
  • Streptomyces scabiei producing phytotoxin called thaxtomin, which cause scab disease on economically important crops such as potato. For molecular genetics study of S. scabiei an effective transformation method was established based on conjugal transfer from Escherichia coli ET12567 (pUZ8002) using a phiC31-derived integration vector, pSET152, containing oriT and attP fragments. The high frequency was obtained on MS medium containing 50 mM $MgCl_2$. In addition, the sequence and location of the chromosomal integration attB site of S. scabiei was identified for the first time in the strains producing thaxtomin by the southern blot analysis of exconjugants and the sequencing of plasmid containing DNA flanking the insertion sites from exconjugant chromosome. Similar to the case of Streptomyces species, a single phiC31 attB site of S. scabiei is present within an ORF encoding a pirin-homolog.

Identification of Bacteriophage K11 Genomic Promoters for K11 RNA Polymerase

  • Han, Kyung-Goo;Kim, Dong-Hee;Junn, Eun-Sung;Lee, Sang-Soo;Kang, Chang-Won
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.637-641
    • /
    • 2002
  • Only one natural promoter that interacts with bacteriophage K11 RNA polymerase has so far been identified. To identify more, in the present study restriction fragments of the phage genome were individually assayed for transcription activity in vitro. The K11 genome was digested with two 4-bp-recognizing restriction enzymes, and the fragments cloned in pUC119 were assayed with purified K11 RNA polymerase. Eight K11 promoter-bearing fragments were isolated and sequenced. We report that the nine K11 promoter sequences (including the one previously identified) were highly homologous from -17 to +4, relative to the initiation site at +1. Interestingly, five had -10G and -8A, while the other four had -10A and -8C. The consensus sequences with the natural -10G/-8A and -10A/-8C, and their variants with -10G/-8C and -10A/-8A, showed nearly equal transcription activity, suggesting residues at -10 and -8 do not regulate promoter activity. Using hybridization methods, physical positions of the cloned promoter-bearing sequences were mapped on SalI-and KpnI-restriction maps of the K11 genome. The flanking sequences of six cloned K11 promoters were found to be orthologous with T7 or T3 genomic sequences.